Load an Abaqus mesh with tetrahedrons (demo_FEA_abaqus_wheel.cpp)
Tutorial that teaches how to use the FEA module to load an .INP mesh file generated with Abaqus or similar FEA preprocessors. Only tetrahedronsare supported here.
// =============================================================================
// PROJECT CHRONO - http://projectchrono.org
//
// Copyright (c) 2014 projectchrono.org
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file at the top level of the distribution and at
// http://projectchrono.org/license-chrono.txt.
//
// =============================================================================
// Authors: Alessandro Tasora
// =============================================================================
//
// FEA advanced demo:
// - loading an Abaqus tetrahedron mesh
// - using it as a wheel with contacts to ground
//
// =============================================================================
#include "chrono/physics/ChSystemSMC.h"
#include "chrono/physics/ChBodyEasy.h"
#include "chrono/physics/ChLoaderUV.h"
#include "chrono/physics/ChLoadContainer.h"
#include "chrono/core/ChRandom.h"
#include "chrono/fea/ChMesh.h"
#include "chrono/fea/ChMeshFileLoader.h"
#include "chrono/fea/ChContactSurfaceMesh.h"
#include "chrono/fea/ChContactSurfaceNodeCloud.h"
#include "chrono/fea/ChLinkNodeFrame.h"
#include "chrono_pardisomkl/ChSolverPardisoMKL.h"
#include "FEAvisualization.h"
using namespace chrono;
using namespace chrono::fea;
ChVisualSystem::Type vis_type = ChVisualSystem::Type::VSG;
int main(int argc, char* argv[]) {
std::cout << "Copyright (c) 2017 projectchrono.org\nChrono version: " << CHRONO_VERSION << std::endl;
// Global parameter for tire:
double tire_rad = 0.8;
double tire_vel_z0 = -3;
ChVector3d tire_center(0, 0.02 + tire_rad, 0.5);
double tire_w0 = tire_vel_z0 / tire_rad;
// Create a Chrono physical system and set the associated collision system
ChSystemSMC sys;
sys.SetNumThreads(std::min(4, ChOMP::GetNumProcs()), 0, 1);
// Create the surface material
auto mysurfmaterial = chrono_types::make_shared<ChContactMaterialSMC>();
mysurfmaterial->SetYoungModulus(10e4);
mysurfmaterial->SetFriction(0.3f);
mysurfmaterial->SetRestitution(0.2f);
mysurfmaterial->SetAdhesion(0);
auto mysurfmaterial2 = chrono_types::make_shared<ChContactMaterialSMC>();
mysurfmaterial->SetYoungModulus(30e4);
mysurfmaterial->SetFriction(0.3f);
mysurfmaterial->SetRestitution(0.2f);
mysurfmaterial->SetAdhesion(0);
// RIGID BODIES
// Create some rigid bodies, for instance a floor:
auto mfloor = chrono_types::make_shared<ChBodyEasyBox>(2, 0.2, 6, 2700, true, true, mysurfmaterial);
mfloor->SetFixed(true);
mfloor->GetVisualShape(0)->SetTexture(GetChronoDataFile("textures/concrete.jpg"));
sys.Add(mfloor);
// Create a step
if (false) {
auto mfloor_step = chrono_types::make_shared<ChBodyEasyBox>(1, 0.2, 0.5, 2700, true, true, mysurfmaterial);
mfloor_step->SetPos(ChVector3d(0, 0.1, -0.2));
mfloor_step->SetFixed(true);
sys.Add(mfloor_step);
}
// Create some bent rectangular fixed slabs
if (false) {
for (int i = 0; i < 50; ++i) {
auto mcube = chrono_types::make_shared<ChBodyEasyBox>(0.25, 0.2, 0.25, 2700, true, true, mysurfmaterial);
ChQuaternion<> vrot;
vrot.SetFromAngleY(ChRandom::Get() * CH_2PI);
mcube->Move(ChCoordsys<>(VNULL, vrot));
vrot.SetFromAngleAxis((ChRandom::Get() - 0.5) * 2 * CH_DEG_TO_RAD * 20,
ChVector3d(ChRandom::Get() - 0.5, 0, ChRandom::Get() - 0.5).Normalize());
mcube->Move(ChCoordsys<>(VNULL, vrot));
mcube->SetPos(
ChVector3d((ChRandom::Get() - 0.5) * 1.8, ChRandom::Get() * 0.1, -ChRandom::Get() * 3.2 + 0.9));
mcube->SetFixed(true);
sys.Add(mcube);
}
}
// Create some stones / obstacles on the ground
if (true) {
for (int i = 0; i < 150; ++i) {
auto mcube = chrono_types::make_shared<ChBodyEasyBox>(0.18, 0.04, 0.18, 2700, true, true, mysurfmaterial2);
ChQuaternion<> vrot;
vrot.SetFromAngleY(ChRandom::Get() * CH_2PI);
mcube->Move(ChCoordsys<>(VNULL, vrot));
mcube->SetPos(
ChVector3d((ChRandom::Get() - 0.5) * 1.4, ChRandom::Get() * 0.2 + 0.05, -ChRandom::Get() * 2.6 + 0.2));
sys.Add(mcube);
}
}
// FINITE ELEMENT MESH
// Create a mesh, that is a container for groups
// of FEA elements and their referenced nodes.
auto my_mesh = chrono_types::make_shared<ChMesh>();
// Create a material, that must be assigned to each solid element in the mesh,
// and set its parameters
auto mmaterial = chrono_types::make_shared<ChContinuumElastic>();
mmaterial->SetYoungModulus(0.016e9); // rubber 0.01e9, steel 200e9
mmaterial->SetPoissonRatio(0.4);
mmaterial->SetRayleighDampingBeta(0.004);
mmaterial->SetDensity(1000);
// Load an ABAQUS .INP tetrahedron mesh file from disk, defining a tetrahedron mesh.
// Note that not all features of INP files are supported. Also, quadratic tetrahedrons are promoted to linear.
// This is much easier than creating all nodes and elements via C++ programming.
// Ex. you can generate these .INP files using Abaqus or exporting from the SolidWorks simulation tool.
std::map<std::string, std::vector<std::shared_ptr<ChNodeFEAbase>>> node_sets;
try {
ChMeshFileLoader::FromAbaqusFile(my_mesh,
GetChronoDataFile("models/tractor_wheel/tractor_wheel_coarse.INP").c_str(),
mmaterial, node_sets, tire_center, tire_alignment);
} catch (std::exception myerr) {
std::cerr << myerr.what() << std::endl;
return 0;
}
// Create the contact surface(s).
// In this case it is a ChContactSurfaceNodeCloud, so just pass
// all nodes to it.
auto mcontactsurf = chrono_types::make_shared<ChContactSurfaceNodeCloud>(mysurfmaterial);
mcontactsurf->AddAllNodes(*my_mesh);
my_mesh->AddContactSurface(mcontactsurf);
// Apply initial speed and angular speed
for (unsigned int i = 0; i < my_mesh->GetNumNodes(); ++i) {
ChVector3d node_pos = std::dynamic_pointer_cast<ChNodeFEAxyz>(my_mesh->GetNode(i))->GetPos();
ChVector3d tang_vel = Vcross(ChVector3d(tire_w0, 0, 0), node_pos - tire_center);
std::dynamic_pointer_cast<ChNodeFEAxyz>(my_mesh->GetNode(i))
->SetPosDt(ChVector3d(0, 0, tire_vel_z0) + tang_vel);
}
// Remember to add the mesh to the system!
sys.Add(my_mesh);
// Add a rim
auto mwheel_rim = chrono_types::make_shared<ChBody>();
mwheel_rim->SetMass(80);
mwheel_rim->SetInertiaXX(ChVector3d(60, 60, 60));
mwheel_rim->SetPos(tire_center);
mwheel_rim->SetRot(tire_alignment);
mwheel_rim->SetPosDt(ChVector3d(0, 0, tire_vel_z0));
mwheel_rim->SetAngVelParent(ChVector3d(tire_w0, 0, 0));
sys.Add(mwheel_rim);
auto mobjmesh = chrono_types::make_shared<ChVisualShapeModelFile>();
mobjmesh->SetFilename(GetChronoDataFile("models/tractor_wheel/tractor_wheel_rim.obj"));
mwheel_rim->AddVisualShape(mobjmesh);
// Connect rim and tire using constraints.
// the BC_RIMTIRE nodeset, in the Abaqus INP file, lists the nodes involved
auto nodeset_sel = "BC_RIMTIRE";
for (auto i = 0; i < node_sets.at(nodeset_sel).size(); ++i) {
auto mlink = chrono_types::make_shared<ChLinkNodeFrame>();
mlink->Initialize(std::dynamic_pointer_cast<ChNodeFEAxyz>(node_sets[nodeset_sel][i]), mwheel_rim);
sys.Add(mlink);
}
// Create a mesh surface, for applying loads:
auto mmeshsurf = chrono_types::make_shared<ChMeshSurface>();
my_mesh->AddMeshSurface(mmeshsurf);
// Nodes of the load surface are those of the nodeset with label BC_SURF:
nodeset_sel = "BC_SURF";
mmeshsurf->AddFacesFromNodeSet(node_sets[nodeset_sel]);
// Apply load to all surfaces in the mesh surface
auto mloadcontainer = chrono_types::make_shared<ChLoadContainer>();
sys.Add(mloadcontainer);
for (const auto& face : mmeshsurf->GetFaces()) {
auto face_loader = chrono_types::make_shared<ChLoaderPressure>(face);
face_loader->SetPressure(10000); // low pressure... the tire has no ply!
auto face_load = chrono_types::make_shared<ChLoad>(face_loader);
mloadcontainer->Add(face_load);
}
// Visualization of the FEM mesh.
// This will automatically update a triangle mesh (a ChVisualShapeTriangleMesh
// asset that is internally managed) by setting proper
// coordinates and vertex colors as in the FEM elements.
// Such triangle mesh can be rendered by Irrlicht or POVray or whatever
// postprocessor that can handle a colored ChVisualShapeTriangleMesh).
auto mvisualizemesh = chrono_types::make_shared<ChVisualShapeFEA>(my_mesh);
mvisualizemesh->SetFEMdataType(ChVisualShapeFEA::DataType::NODE_SPEED_NORM);
mvisualizemesh->SetColorscaleMinMax(0.0, 10);
mvisualizemesh->SetSmoothFaces(true);
my_mesh->AddVisualShapeFEA(mvisualizemesh);
/*
auto mvisualizemeshB = chrono_types::make_shared<ChVisualShapeFEA>(my_mesh);
mvisualizemeshB->SetFEMdataType(ChVisualShapeFEA::DataType::SURFACE);
mvisualizemeshB->SetWireframe(true);
my_mesh->AddVisualShapeFEA(mvisualizemeshB);
*/
/*
auto mvisualizemeshC = chrono_types::make_shared<ChVisualShapeFEA>(my_mesh);
mvisualizemeshC->SetFEMglyphType(ChVisualShapeFEA::GlyphType::NODE_DOT_POS);
mvisualizemeshC->SetFEMdataType(ChVisualShapeFEA::DataType::NONE);
mvisualizemeshC->SetSymbolsThickness(0.006);
my_mesh->AddVisualShapeFEA(mvisualizemeshC);
*/
// Create the run-time visualization system
auto vis = CreateVisualizationSystem(vis_type, CameraVerticalDir::Y, sys, "Abaqus wheel",
ChVector3d(1.0, 1.4, -1.2), ChVector3d(0, tire_rad, 0));
// SIMULATION LOOP
// Change solver to Pardiso from Chrono::PardisoMKL
auto mkl_solver = chrono_types::make_shared<ChSolverPardisoMKL>();
mkl_solver->LockSparsityPattern(true);
sys.SetSolver(mkl_solver);
sys.Update();
// Change type of integrator:
sys.SetTimestepperType(ChTimestepper::Type::EULER_IMPLICIT_LINEARIZED); // fast, less precise
// sys.SetTimestepperType(chrono::ChTimestepper::Type::HHT); // precise,slower, might iterate each step
// if later you want to change integrator settings:
mystepper->SetAlpha(-0.2);
mystepper->SetMaxIters(2);
mystepper->SetAbsTolerances(1e-6);
}
while (vis->Run()) {
vis->BeginScene();
vis->Render();
vis->EndScene();
sys.DoStepDynamics(0.001);
}
return 0;
}
Vulkan Scene Graph.
std::string GetChronoDataFile(const std::string &filename)
Get the full path to the specified filename, given relative to the Chrono data directory (thread safe...
Definition: ChGlobal.cpp:37
void Add(std::shared_ptr< ChPhysicsItem > item)
Attach an arbitrary ChPhysicsItem (e.g.
Definition: ChSystem.cpp:196
virtual void SetNumThreads(int num_threads_chrono, int num_threads_collision=0, int num_threads_eigen=0)
Set the number of OpenMP threads used by Chrono itself, Eigen, and the collision detection system.
Definition: ChSystem.cpp:373
Representation of a transform with translation and rotation.
Definition: ChCoordsys.h:28
Type
Supported run-time visualization systems.
Definition: ChVisualSystem.h:36
std::shared_ptr< ChTimestepper > GetTimestepper() const
Get the timestepper currently used for time integration.
Definition: ChSystem.h:93
void SetFromAngleAxis(Real angle, const ChVector3< Real > &axis)
Set the quaternion from an angle of rotation and an axis, defined in absolute coords.
Definition: ChQuaternion.h:1052
Definition of a 3x3 fixed-size matrix to represent 3D rotations and inertia tensors.
Definition: ChMatrix33.h:31
ChQuaterniond QuatFromAngleY(double angle)
Convert from a rotation about Y axis to a quaternion.
Definition: ChRotation.cpp:192
__host__ __device__ int min(int a, int b)
Return the minimum of two integer numbers.
Definition: CustomMath.h:64
void SetFromAngleY(Real angleY)
Set the quaternion from an angle of rotation about Y axis.
Definition: ChQuaternion.h:320
int DoStepDynamics(double step_size)
Advance the dynamics simulation by a single time step of given length.
Definition: ChSystem.cpp:1635
Class for a physical system in which contact is modeled using a smooth (penalty-based) method.
Definition: ChSystemSMC.h:30
Bullet-based collision detection system.
ChVector3< double > ChVector3d
Alias for double-precision vectors.
Definition: ChVector3.h:283
virtual void SetSolver(std::shared_ptr< ChSolver > newsolver)
Attach a solver (derived from ChSolver) for use by this system.
Definition: ChSystem.cpp:319
static void FromAbaqusFile(std::shared_ptr< ChMesh > mesh, const char *filename, std::shared_ptr< ChContinuumMaterial > my_material, std::map< std::string, std::vector< std::shared_ptr< ChNodeFEAbase > > > &node_sets, ChVector3d pos_transform=VNULL, ChMatrix33<> rot_transform=ChMatrix33<>(1), bool discard_unused_nodes=true)
Load tetrahedrons, if any, saved in a .inp file for Abaqus.
Definition: ChMeshFileLoader.cpp:206
Class defining quaternion objects, that is four-dimensional numbers.
Definition: ChQuaternion.h:34
void SetTimestepperType(ChTimestepper::Type type)
Set the method for time integration (time stepper type).
Definition: ChSystem.cpp:412
virtual void SetCollisionSystemType(ChCollisionSystem::Type type)
Set the collision detection system used by this Chrono system to the specified type.
Definition: ChSystem.cpp:324
void Update(double mytime, bool update_assets=true)
Updates all the auxiliary data and children of bodies, forces, links, given their current state.
Definition: ChSystem.cpp:697