Description
Advanced section of an Euler-Bernoulli beam in 3D, for a homogeneous density and homogeneous elasticity, given basic material properties (Izz and Iyy moments of inertia, area, Young modulus, etc.), but also supporting the advanced case of Iyy and Izz axes rotated respect reference, elastic center with offset from centerline reference, and shear center with offset from centerline reference.
To be used with ChElementBeamEuler. This material can be shared between multiple beams.
#include <ChBeamSectionEuler.h>
Public Member Functions | |
void | SetSectionRotation (double ma) |
Set the rotation in [rad], about elastic center, of the Y Z axes for which the Iyy and Izz are computed. | |
void | SetCentroid (double my, double mz) |
Set the displacement of the centroid C (i.e. More... | |
void | SetShearCenter (double my, double mz) |
Set the displacement of the shear center S with respect to the reference beam line. More... | |
virtual double | GetSectionRotation () const override |
Set the rotation of the Y Z section axes for which the YbendingRigidity and ZbendingRigidity are defined. | |
virtual double | GetCentroidY () const override |
Gets the Y position of the elastic center respect to centerline. | |
virtual double | GetCentroidZ () const override |
Gets the Z position of the elastic center respect to centerline. | |
virtual double | GetShearCenterY () const override |
Gets the Y position of the shear center respect to centerline. | |
virtual double | GetShearCenterZ () const override |
Gets the Z position of the shear center respect to centerline. | |
Public Member Functions inherited from chrono::fea::ChBeamSectionEulerSimple | |
void | SetArea (const double ma) |
Set the cross sectional area A of the beam (m^2) | |
double | GetArea () const |
void | SetIyy (double ma) |
Set the Iyy moment of inertia of the beam (for flexion about y axis) Note: some textbook calls this Iyy as Iz. | |
double | GetIyy () const |
void | SetIzz (double ma) |
Set the Izz moment of inertia of the beam (for flexion about z axis) Note: some textbook calls this Izz as Iy. | |
double | GetIzz () const |
void | SetJ (double ma) |
Set the J torsion constant of the beam (for torsion about x axis) | |
double | GetJ () const |
void | SetKsy (double ma) |
Set the Timoshenko shear coefficient Ks for y shear, usually about 0.8, (for elements that use this, ex. More... | |
double | GetKsy () const |
void | SetKsz (double ma) |
Set the Timoshenko shear coefficient Ks for z shear, usually about 0.8, (for elements that use this, ex. More... | |
double | GetKsz () const |
void | SetAsRectangularSection (double width_y, double width_z) |
Shortcut: set Area, Ixx, Iyy, Ksy, Ksz and J torsion constant at once, given the y and z widths of the beam assumed with rectangular shape. | |
void | SetAsCircularSection (double diameter) |
Shortcut: set Area, Ixx, Iyy, Ksy, Ksz and J torsion constant at once, given the diameter of the beam assumed with circular shape. | |
void | SetDensity (double md) |
Set the density of the beam (kg/m^3) | |
double | GetDensity () const |
void | SetYoungModulus (double mE) |
Set E, the Young elastic modulus (N/m^2) | |
double | GetYoungModulus () const |
void | SetShearModulus (double mG) |
Set the shear modulus, used for computing the torsion rigidity = J*G. | |
double | GetShearModulus () const |
void | SetShearModulusFromPoisson (double mpoisson) |
Set the shear modulus, given current Young modulus and the specified Poisson ratio. | |
virtual double | GetAxialRigidity () const override |
Gets the axial rigidity, usually A*E. | |
virtual double | GetTorsionRigidityX () const override |
Gets the torsion rigidity, for torsion about X axis at elastic center, usually J*G. | |
virtual double | GetBendingRigidityY () const override |
Gets the bending rigidity, for bending about Y axis at elastic center, usually Iyy*E. | |
virtual double | GetBendingRigidityZ () const override |
Gets the bending rigidity, for bending about Z axis at elastic center, usually Izz*E. | |
virtual void | ComputeInertiaMatrix (ChMatrix66d &M) override |
Compute the 6x6 sectional inertia matrix, as in {x_momentum,w_momentum}=[Mm]{xvel,wvel}. | |
virtual void | ComputeInertiaDampingMatrix (ChMatrix66d &Ri, const ChVector3d &mW) override |
Compute the 6x6 sectional inertia damping matrix [Ri] (gyroscopic matrix damping) More... | |
virtual void | ComputeInertiaStiffnessMatrix (ChMatrix66d &Ki, const ChVector3d &mWvel, const ChVector3d &mWacc, const ChVector3d &mXacc) override |
Compute the 6x6 sectional inertia stiffness matrix [Ki^]. More... | |
virtual void | ComputeQuadraticTerms (ChVector3d &mF, ChVector3d &mT, const ChVector3d &mW) override |
Compute the centrifugal term and gyroscopic term. | |
virtual double | GetMassPerUnitLength () const override |
Get mass per unit length, ex.SI units [kg/m]. | |
virtual double | GetInertiaJxxPerUnitLength () const override |
Get the Jxx component of the inertia per unit length (polar inertia) in the Y Z unrotated reference frame of the section at centerline. More... | |
Public Member Functions inherited from chrono::fea::ChBeamSectionEuler | |
virtual void | ComputeInertialForce (ChVector3d &mFi, ChVector3d &mTi, const ChVector3d &mWvel, const ChVector3d &mWacc, const ChVector3d &mXacc) |
Compute the total inertial forces (per unit length). More... | |
void | SetArtificialJyyJzzFactor (double mf) |
The Euler beam model has no rotational inertia per each section, assuming mass is concentrated on the centerline. More... | |
double | GetArtificialJyyJzzFactor () |
virtual void | SetRayleighDampingAlpha (double malpha) |
Set the "alpha" Rayleigh damping ratio, the mass-proportional structural damping in: R = alpha*M + beta*K. | |
double | GetRayleighDampingAlpha () |
virtual void | SetRayleighDampingBeta (double mbeta) |
Set the "beta" Rayleigh damping ratio, the stiffness-proportional structural damping in: R = alpha*M + beta*K. | |
double | GetRayleighDampingBeta () |
virtual void | SetRayleighDamping (double mbeta, double malpha=0) |
Set both beta and alpha coefficients in Rayleigh damping model: R = alpha*M + beta*K. More... | |
Public Member Functions inherited from chrono::fea::ChBeamSection | |
void | SetDrawShape (std::shared_ptr< ChBeamSectionShape > mshape) |
Set the graphical representation for this section. More... | |
std::shared_ptr< ChBeamSectionShape > | GetDrawShape () const |
Get the drawing shape of this section (i.e.a 2D profile used for drawing 3D tesselation and visualization) By default a thin square section, use SetDrawShape() to change it. | |
void | SetDrawThickness (double thickness_y, double thickness_z) |
Shortcut: adds a ChBeamSectionShapeRectangular for visualization as a centered rectangular beam, and sets its width/height. More... | |
void | SetDrawCircularRadius (double draw_rad) |
Shortcut: adds a ChBeamSectionShapeCircular for visualization as a centered circular beam, and sets its radius. More... | |
void | SetCircular (bool ic) |
OBSOLETE only for backward compability. | |
Public Attributes | |
double | alpha |
double | Cy |
double | Cz |
double | Sy |
double | Sz |
Public Attributes inherited from chrono::fea::ChBeamSectionEulerSimple | |
double | Area |
double | Iyy |
double | Izz |
double | J |
double | G |
double | E |
double | density |
double | Ks_y |
double | Ks_z |
Public Attributes inherited from chrono::fea::ChBeamSectionEuler | |
bool | compute_inertia_damping_matrix = true |
Flag that turns on/off the computation of the [Ri] 'gyroscopic' inertial damping matrix. More... | |
bool | compute_inertia_stiffness_matrix = true |
Flag that turns on/off the computation of the [Ki] inertial stiffness matrix. More... | |
bool | compute_Ri_Ki_by_num_diff = false |
Flag for computing the Ri and Ki matrices via numerical differentiation even if an analytical expression is provided. More... | |
Additional Inherited Members | |
Protected Attributes inherited from chrono::fea::ChBeamSectionEuler | |
double | rdamping_beta |
double | rdamping_alpha |
double | JzzJyy_factor |
Member Function Documentation
◆ SetCentroid()
|
inline |
Set the displacement of the centroid C (i.e.
the elastic center, or tension center) with respect to the reference beam line.
◆ SetShearCenter()
|
inline |
Set the displacement of the shear center S with respect to the reference beam line.
For shapes like rectangles, rotated rectangles, etc., it corresponds to the centroid C, but for "L" shaped or "U" shaped beams this is not always true, and the shear center accounts for torsion effects when a shear force is applied.
The documentation for this class was generated from the following file:
- /builds/uwsbel/chrono/src/chrono/fea/ChBeamSectionEuler.h