Mathematical support
Description
Collaboration diagram for Mathematical support:
Namespaces | |
chrono::fea::rotutils | |
Utility functions for rotations in 3D and their derivatives. | |
Classes | |
class | chrono::fea::ChGaussIntegrationRule |
Class for the management of the Gauss Quadrature in 1D, 2D or 3D space. More... | |
class | chrono::fea::ChGaussPoint |
Class for a Gauss point, that has a position (1D-3D) and a weight. More... | |
class | chrono::fea::ChMatrixCorotation |
Perform a corotation (warping) of a K matrix by pre- or post- multiplying it with a C matrix that has 3x3 rotation matrices R as diagonal blocks, so that C*K means: More... | |
class | chrono::fea::PolarDecomposition |
Polar decomposition of a general 3x3 matrix. More... | |
class | chrono::fea::ChPolarDecomposition< Real > |
Perform a polar decomposition of a 3x3 P matrix in order to retrieve the orthogonal Q and the symmetric S form, as P=Q*S. More... | |
Functions | |
template<int N> | |
bool | chrono::fea::LU_factor (ChMatrixNM< double, N, N > &A, ChMatrixNM< int, N, 1 > &INDX, bool &pivoting) |
In-place LU factorization. More... | |
template<int N> | |
void | chrono::fea::LU_solve (const ChMatrixNM< double, N, N > &A, const ChMatrixNM< int, N, 1 > &INDX, ChMatrixNM< double, N, 1 > &B) |
LU linear system solution (back substitution) More... | |
Function Documentation
◆ LU_factor()
template<int N>
bool chrono::fea::LU_factor | ( | ChMatrixNM< double, N, N > & | A, |
ChMatrixNM< int, N, 1 > & | INDX, | ||
bool & | pivoting | ||
) |
In-place LU factorization.
Return false if the matrix is (close to) singular
- Parameters
-
[in,out] A matrix to be factorized [out] INDX vector of pivots [out] pivoting true if pivoting was required; false otherwise
◆ LU_solve()
template<int N>
void chrono::fea::LU_solve | ( | const ChMatrixNM< double, N, N > & | A, |
const ChMatrixNM< int, N, 1 > & | INDX, | ||
ChMatrixNM< double, N, 1 > & | B | ||
) |
LU linear system solution (back substitution)
- Parameters
-
[in] A LU factorized matrix [out] INDX vector of pivots [in,out] B on entry, the RHS; on return, the solution vector