Description
Laminated thick shell with geometrically exact kinematics, with 4 nodes.
It generalizes the Reissner thick shell theory (in fact each layer requires a ChMaterialShellReissner) by using the Chroscielewski 6-dof field shell theory as discussed in:
Wojciech Witkowski, "4-Node combined shell element with semi-EAS-ANS strain interpolations in 6-parameter shell theories with drilling degrees of freedom", Comp.Mech 2009.
This specific implementation is based on the paper:
Marco Morandini, Pierangelo Masarati, "Implementation and validation of a 4-node shell finite element", IDETC/CIE 2014.
The node numbering is in ccw fashion as in the following scheme:
v ^ | D o-----+-----o C | | | --+-----+-----+----> u | | | A o-----+-----o B
#include <ChElementShellReissner4.h>
Classes | |
class | Layer |
Definition of a layer. More... | |
Public Types | |
enum | IntegrationPoint { IP_1_1 = 0, IP_1_2 = 1, IP_1_3 = 2, IP_2_1 = 3, IP_2_2 = 4, IP_2_3 = 5, IP_3_1 = 6, IP_3_2 = 7, IP_3_3 = 8, NUMIP = 4 } |
enum | ShearStrainEvaluationPoint { SSEP_1 = 0, SSEP_2 = 1, SSEP_3 = 2, SSEP_4 = 3, NUMSSEP = 4 } |
enum | NodeName { NODE1 = 0, NODE2 = 1, NODE3 = 2, NODE4 = 3, NUMNODES = 4 } |
enum | Deformations { STRAIN = 0, CURVAT = 1, NUMDEFORM = 2 } |
enum | InnerEASdofs { IDOFS = 7 } |
using | ShapeVector = ChMatrixNM< double, 1, 4 > |
Public Member Functions | |
virtual int | GetNnodes () override |
Get the number of nodes used by this element. | |
virtual int | GetNdofs () override |
Get the number of coordinates in the field used by the referenced nodes. | |
virtual int | GetNodeNdofs (int n) override |
Get the number of coordinates from the n-th node used by this element. | |
void | SetNodes (std::shared_ptr< ChNodeFEAxyzrot > nodeA, std::shared_ptr< ChNodeFEAxyzrot > nodeB, std::shared_ptr< ChNodeFEAxyzrot > nodeC, std::shared_ptr< ChNodeFEAxyzrot > nodeD) |
Specify the nodes of this element. More... | |
virtual std::shared_ptr< ChNodeFEAbase > | GetNodeN (int n) override |
Access the n-th node of this element. | |
std::shared_ptr< ChNodeFEAxyzrot > | GetNodeA () const |
Get a handle to the first node of this element. | |
std::shared_ptr< ChNodeFEAxyzrot > | GetNodeB () const |
Get a handle to the second node of this element. | |
std::shared_ptr< ChNodeFEAxyzrot > | GetNodeC () const |
Get a handle to the third node of this element. | |
std::shared_ptr< ChNodeFEAxyzrot > | GetNodeD () const |
Get a handle to the fourth node of this element. | |
void | SetAsNeutral () |
Sets the neutral rotations of nodes A,B,C,D, at once, assuming the current element position is for zero strain. | |
void | AddLayer (double thickness, double theta, std::shared_ptr< ChMaterialShellReissner > material) |
Add a layer. More... | |
void | SetLayerZreferenceCentered () |
Impose the reference z level of shell element as centered along the total thickness. More... | |
void | SetLayerZreference (double z_from_bottom) |
Impose the reference z level of shell element respect to the lower face of bottom layer Note! Use after you added all layers. | |
size_t | GetNumLayers () const |
Get the number of layers. | |
const Layer & | GetLayer (size_t i) const |
Get a handle to the specified layer. | |
double | GetLengthX () const |
Set the structural damping: this is the Rayleigh "alpha" OBSOLETE create a ChDampingReissnerRayleigh object and add to layer material to have the same effect void SetAlphaDamp(double a) { m_Alpha = a; } More... | |
double | GetLengthY () const |
Get the element length in the Y direction. | |
double | GetThickness () |
Get the total thickness of the shell element (might be sum of multiple layer thicknesses) | |
ChQuaternion | GetAvgRot () |
void | ShapeFunctions (ShapeVector &N, double x, double y) |
Fills the N shape function matrix. | |
void | ShapeFunctionsDerivativeX (ShapeVector &Nx, double x, double y) |
Fills the Nx shape function derivative matrix with respect to X. | |
void | ShapeFunctionsDerivativeY (ShapeVector &Ny, double x, double y) |
Fills the Ny shape function derivative matrix with respect to Y. | |
ChVector | EvaluateGP (int igp) |
ChVector | EvaluatePT (int ipt) |
virtual unsigned int | iGetNumDof (void) const |
Inner EAS dofs. | |
virtual void | GetStateBlock (ChVectorDynamic<> &mD) override |
Fill the D vector with the current field values at thenodes of the element, with proper ordering. More... | |
virtual void | ComputeKRMmatricesGlobal (ChMatrixRef H, double Kfactor, double Rfactor=0, double Mfactor=0) override |
Set H as the stiffness matrix K, scaled by Kfactor. More... | |
virtual void | ComputeMmatrixGlobal (ChMatrixRef M) override |
Set M as the global mass matrix. | |
virtual void | ComputeInternalForces (ChVectorDynamic<> &Fi) override |
Computes the internal forces. More... | |
virtual void | Update () override |
Update the state of this element. | |
virtual void | EvaluateSectionDisplacement (const double u, const double v, ChVector<> &u_displ, ChVector<> &u_rotaz) override |
Gets the xyz displacement of a point on the shell, and the rotation RxRyRz of section reference, at parametric coordinates 'u' and 'v'. More... | |
virtual void | EvaluateSectionFrame (const double u, const double v, ChVector<> &point, ChQuaternion<> &rot) override |
Gets the absolute xyz position of a point on the shell, and the absolute rotation of section reference, at parametric coordinates 'u' and 'v'. More... | |
virtual void | EvaluateSectionPoint (const double u, const double v, ChVector<> &point) override |
Gets the absolute xyz position of a point on the shell, at parametric coordinates 'u' and 'v'. More... | |
void | ComputeInternalJacobians (double Kfactor, double Rfactor) |
Compute Jacobians of the internal forces. More... | |
void | ComputeMassMatrix () |
Compute the mass matrix of the element. More... | |
virtual int | LoadableGet_ndof_x () override |
Gets the number of DOFs affected by this element (position part). | |
virtual int | LoadableGet_ndof_w () override |
Gets the number of DOFs affected by this element (velocity part). | |
virtual void | LoadableGetStateBlock_x (int block_offset, ChState &mD) override |
Gets all the DOFs packed in a single vector (position part). | |
virtual void | LoadableGetStateBlock_w (int block_offset, ChStateDelta &mD) override |
Gets all the DOFs packed in a single vector (velocity part). | |
virtual void | LoadableStateIncrement (const unsigned int off_x, ChState &x_new, const ChState &x, const unsigned int off_v, const ChStateDelta &Dv) override |
Increment all DOFs using a delta. | |
virtual int | Get_field_ncoords () override |
Number of coordinates in the interpolated field, ex=3 for a tetrahedron finite element or a cable, = 1 for a thermal problem, etc. | |
virtual int | GetSubBlocks () override |
Get the number of DOFs sub-blocks. | |
virtual unsigned int | GetSubBlockOffset (int nblock) override |
Get the offset of the specified sub-block of DOFs in global vector. | |
virtual unsigned int | GetSubBlockSize (int nblock) override |
Get the size of the specified sub-block of DOFs in global vector. | |
virtual bool | IsSubBlockActive (int nblock) const override |
Check if the specified sub-block of DOFs is active. | |
virtual void | EvaluateSectionVelNorm (double U, double V, ChVector<> &Result) override |
Virtual method to plot velocity field distribution. More... | |
virtual void | LoadableGetVariables (std::vector< ChVariables * > &mvars) override |
Get the pointers to the contained ChVariables, appending to the mvars vector. | |
virtual void | ComputeNF (const double U, const double V, ChVectorDynamic<> &Qi, double &detJ, const ChVectorDynamic<> &F, ChVectorDynamic<> *state_x, ChVectorDynamic<> *state_w) override |
Evaluate N'*F , where N is some type of shape function evaluated at U,V coordinates of the surface, each ranging in -1..+1 F is a load, N'*F is the resulting generalized load Returns also det[J] with J=[dx/du,..], that might be useful in gauss quadrature. More... | |
virtual void | ComputeNF (const double U, const double V, const double W, ChVectorDynamic<> &Qi, double &detJ, const ChVectorDynamic<> &F, ChVectorDynamic<> *state_x, ChVectorDynamic<> *state_w) override |
Evaluate N'*F , where N is some type of shape function evaluated at U,V,W coordinates of the volume, each ranging in -1..+1 F is a load, N'*F is the resulting generalized load Returns also det[J] with J=[dx/du,..], that might be useful in gauss quadrature. More... | |
virtual double | GetDensity () override |
This is needed so that it can be accessed by ChLoaderVolumeGravity. More... | |
virtual ChVector | ComputeNormal (const double U, const double V) override |
Gets the normal to the surface at the parametric coordinate U,V. More... | |
Public Member Functions inherited from chrono::fea::ChElementShell | |
virtual bool | IsTriangleShell () |
Return false if quadrilateral shell - hence u,v parametric coordinates assumed in -1..+1, return true if triangular shell - hence u,v are triangle natural coordinates assumed in 0..+1. | |
Public Member Functions inherited from chrono::fea::ChElementGeneric | |
ChKblockGeneric & | Kstiffness () |
Access the proxy to stiffness, for sparse solver. | |
virtual void | EleIntLoadResidual_F (ChVectorDynamic<> &R, const double c) override |
Add the internal forces (pasted at global nodes offsets) into a global vector R, multiplied by a scaling factor c, as R += forces * c This default implementation is SLIGHTLY INEFFICIENT. | |
virtual void | EleIntLoadResidual_Mv (ChVectorDynamic<> &R, const ChVectorDynamic<> &w, const double c) override |
Add the product of element mass M by a vector w (pasted at global nodes offsets) into a global vector R, multiplied by a scaling factor c, as R += M * w * c This default implementation is VERY INEFFICIENT. | |
virtual void | EleIntLoadResidual_F_gravity (ChVectorDynamic<> &R, const ChVector<> &G_acc, const double c) override |
Add the contribution of gravity loads, multiplied by a scaling factor c, as: R += M * g * c This default implementation is VERY INEFFICIENT. More... | |
virtual void | ComputeGravityForces (ChVectorDynamic<> &Fg, const ChVector<> &G_acc) override |
Compute the gravitational forces. More... | |
virtual void | InjectKRMmatrices (ChSystemDescriptor &descriptor) override |
Tell to a system descriptor that there are item(s) of type ChKblock in this object (for further passing it to a solver) | |
virtual void | KRMmatricesLoad (double Kfactor, double Rfactor, double Mfactor) override |
Add the current stiffness K and damping R and mass M matrices in encapsulated ChKblock item(s), if any. More... | |
virtual void | VariablesFbLoadInternalForces (double factor=1.) override |
Add the internal forces, expressed as nodal forces, into the encapsulated ChVariables. | |
virtual void | VariablesFbIncrementMq () override |
Add M*q (internal masses multiplied current 'qb'). | |
Public Member Functions inherited from chrono::fea::ChElementBase | |
virtual int | GetNdofs_active () |
Get the actual number of active degrees of freedom. More... | |
virtual int | GetNodeNdofs_active (int n) |
Get the actual number of active coordinates from the specified node that are used by this element. More... | |
virtual void | ComputeNodalMass () |
Compute element's nodal masses. | |
virtual void | EleDoIntegration () |
This is optionally implemented if there is some internal state that requires integration. | |
Public Member Functions inherited from chrono::ChLoadableUV | |
virtual bool | IsTriangleIntegrationNeeded () |
If true, use quadrature over u,v in [0..1] range as triangle area coords (with z=1-u-v) otherwise use default quadrature over u,v in [-1..+1] as rectangular isoparametric coords. | |
Public Member Functions inherited from chrono::ChLoadableUVW | |
virtual bool | IsTetrahedronIntegrationNeeded () |
If true, use quadrature over u,v,w in [0..1] range as tetrahedron volumetric coords (with z=1-u-v-w) otherwise use default quadrature over u,v,w in [-1..+1] as box isoparametric coords. | |
virtual bool | IsTrianglePrismIntegrationNeeded () |
If true, use quadrature over u,v in [0..1] range as triangle natural coords (with z=1-u-v), and use linear quadrature over w in [-1..+1], otherwise use default quadrature over u,v,w in [-1..+1] as box isoparametric coords. | |
Public Attributes | |
std::vector< std::shared_ptr< ChNodeFEAxyzrot > > | m_nodes |
element nodes | |
std::vector< Layer > | m_layers |
element layers | |
std::vector< double > | m_layers_z |
layer separation z values (not scaled, default centered tot thickness) | |
double | tot_thickness |
total element thickness | |
double | m_lenX |
element length in X direction | |
double | m_lenY |
element length in Y direction | |
ChMatrixNM< double, 24, 24 > | m_MassMatrix |
mass matrix | |
ChMatrixNM< double, 24, 24 > | m_JacobianMatrix |
Jacobian matrix (Kfactor*[K] + Rfactor*[R]) | |
ChVariablesGenericDiagonalMass * | mvariables |
ChVector | xa_0 [NUMNODES] |
ChVector | xa [NUMNODES] |
ChMatrix33 | iTa [NUMNODES] |
ChMatrix33 | iTa_i [NUMIP] |
ChMatrix33 | iTa_A [NUMSSEP] |
ChVector | phi_tilde_n [NUMNODES] |
ChVector | phi_tilde_i [NUMIP] |
ChVector | phi_tilde_A [NUMSSEP] |
ChVector | phi_tilde_0 |
ChMatrix33 | T0_overline |
ChMatrix33 | T_overline |
ChMatrix33 | T_0_0 |
ChMatrix33 | T_0_i [NUMIP] |
ChMatrix33 | T_0_A [NUMSSEP] |
ChMatrix33 | T_0 |
ChMatrix33 | T_i [NUMIP] |
ChMatrix33 | T_A [NUMSSEP] |
ChMatrix33 | Phi_Delta_i [NUMIP][NUMNODES] |
ChMatrix33 | Phi_Delta_A [NUMIP][NUMNODES] |
ChMatrix33 | Kappa_delta_i_1 [NUMIP][NUMNODES] |
ChMatrix33 | Kappa_delta_i_2 [NUMIP][NUMNODES] |
ChMatrix33 | Q_i [NUMIP] |
ChMatrix33 | Q_A [NUMSSEP] |
ChVector | k_1_i [NUMIP] |
ChVector | k_2_i [NUMIP] |
ChVector | eps_tilde_1_0_i [NUMIP] |
ChVector | eps_tilde_2_0_i [NUMIP] |
ChVector | eps_tilde_1_0_A [NUMSSEP] |
ChVector | eps_tilde_2_0_A [NUMSSEP] |
ChVector | eps_tilde_1_i [NUMIP] |
ChVector | eps_tilde_2_i [NUMIP] |
ChVector | eps_tilde_1_A [NUMSSEP] |
ChVector | eps_tilde_2_A [NUMSSEP] |
ChVector | k_tilde_1_0_i [NUMIP] |
ChVector | k_tilde_2_0_i [NUMIP] |
ChVector | k_tilde_1_i [NUMIP] |
ChVector | k_tilde_2_i [NUMIP] |
ChMatrixNM< double, 2, 2 > | S_alpha_beta_0 |
ChMatrixNM< double, 2, 2 > | S_alpha_beta_i [NUMIP] |
ChMatrixNM< double, 2, 2 > | S_alpha_beta_A [NUMSSEP] |
double | alpha_0 |
double | alpha_i [NUMIP] |
ChMatrixNM< double, 4, 2 > | L_alpha_beta_i [NUMIP] |
ChMatrixNM< double, 4, 2 > | L_alpha_beta_A [NUMSSEP] |
ChMatrixNM< double, 12, 24 > | B_overline_i [NUMIP] |
ChMatrixNM< double, 15, 24 > | D_overline_i [NUMIP] |
ChMatrixNM< double, 15, 15 > | G_i [NUMIP] |
ChMatrixNM< double, 12, IDOFS > | P_i [NUMIP] |
ChMatrixNM< double, IDOFS, IDOFS > | K_beta_beta_i [NUMIP] |
ChVector | y_i_1 [NUMIP] |
ChVector | y_i_2 [NUMIP] |
ChVectorN< double, IDOFS > | beta |
ChVectorN< double, 12 > | epsilon_hat |
ChVectorN< double, 12 > | epsilon |
ChVectorN< double, 12 > | stress_i [NUMIP] |
bool | bFirstRes |
Additional Inherited Members | |
Protected Attributes inherited from chrono::fea::ChElementShell | |
double | mass |
Protected Attributes inherited from chrono::fea::ChElementGeneric | |
ChKblockGeneric | Kmatr |
Member Function Documentation
◆ AddLayer()
void chrono::fea::ChElementShellReissner4::AddLayer | ( | double | thickness, |
double | theta, | ||
std::shared_ptr< ChMaterialShellReissner > | material | ||
) |
Add a layer.
By default, when adding more than one layer, the reference z level of the shell element is centered along the total thickness.
- Parameters
-
thickness layer thickness theta fiber angle (radians) material layer material
◆ ComputeInternalForces()
|
overridevirtual |
Computes the internal forces.
(E.g. the actual position of nodes is not in relaxed reference position) and set values in the Fi vector.
Implements chrono::fea::ChElementBase.
◆ ComputeInternalJacobians()
void chrono::fea::ChElementShellReissner4::ComputeInternalJacobians | ( | double | Kfactor, |
double | Rfactor | ||
) |
Compute Jacobians of the internal forces.
This function calculates a linear combination of the stiffness (K) and damping (R) matrices, J = Kfactor * K + Rfactor * R for given coefficients Kfactor and Rfactor. This Jacobian will be further combined with the global mass matrix M and included in the global stiffness matrix H in the function ComputeKRMmatricesGlobal().
◆ ComputeKRMmatricesGlobal()
|
overridevirtual |
Set H as the stiffness matrix K, scaled by Kfactor.
Optionally, also superimposes global damping matrix R, scaled by Rfactor, and mass matrix M, scaled by Mfactor. Matrices are expressed in global reference. Corotational elements can take the local Kl & Rl matrices and rotate them.
Implements chrono::fea::ChElementBase.
◆ ComputeMassMatrix()
void chrono::fea::ChElementShellReissner4::ComputeMassMatrix | ( | ) |
Compute the mass matrix of the element.
Note: in this 'basic' implementation, constant section and constant material are assumed
◆ ComputeNF() [1/2]
|
overridevirtual |
Evaluate N'*F , where N is some type of shape function evaluated at U,V coordinates of the surface, each ranging in -1..+1 F is a load, N'*F is the resulting generalized load Returns also det[J] with J=[dx/du,..], that might be useful in gauss quadrature.
- Parameters
-
U parametric coordinate in surface V parametric coordinate in surface Qi Return result of Q = N'*F here detJ Return det[J] here F Input F vector, size is =n. field coords. state_x if != 0, update state (pos. part) to this, then evaluate Q state_w if != 0, update state (speed part) to this, then evaluate Q
Implements chrono::ChLoadableUV.
◆ ComputeNF() [2/2]
|
overridevirtual |
Evaluate N'*F , where N is some type of shape function evaluated at U,V,W coordinates of the volume, each ranging in -1..+1 F is a load, N'*F is the resulting generalized load Returns also det[J] with J=[dx/du,..], that might be useful in gauss quadrature.
- Parameters
-
U parametric coordinate in volume V parametric coordinate in volume W parametric coordinate in volume Qi Return result of N'*F here, maybe with offset block_offset detJ Return det[J] here F Input F vector, size is = n.field coords. state_x if != 0, update state (pos. part) to this, then evaluate Q state_w if != 0, update state (speed part) to this, then evaluate Q
Implements chrono::ChLoadableUVW.
◆ ComputeNormal()
|
overridevirtual |
Gets the normal to the surface at the parametric coordinate U,V.
Each coordinate ranging in -1..+1.
Implements chrono::ChLoadableUV.
◆ EvaluateSectionDisplacement()
|
overridevirtual |
Gets the xyz displacement of a point on the shell, and the rotation RxRyRz of section reference, at parametric coordinates 'u' and 'v'.
Note, u=-1..+1 , v= -1..+1 parametric coordinates, except if triangular shell, where u=0..+1, v=0..+1, natural triangle coords. Results are not corotated.
Implements chrono::fea::ChElementShell.
◆ EvaluateSectionFrame()
|
overridevirtual |
Gets the absolute xyz position of a point on the shell, and the absolute rotation of section reference, at parametric coordinates 'u' and 'v'.
Note, u=-1..+1 , v= -1..+1 parametric coordinates, except if triangular shell, where u=0..+1, v=0..+1, natural triangle coords. Results are corotated.
Implements chrono::fea::ChElementShell.
◆ EvaluateSectionPoint()
|
overridevirtual |
Gets the absolute xyz position of a point on the shell, at parametric coordinates 'u' and 'v'.
Note, u=-1..+1 , v= -1..+1 parametric coordinates, except if triangular shell, where u=0..+1, v=0..+1, natural triangle coords. Results are corotated.
Implements chrono::fea::ChElementShell.
◆ EvaluateSectionVelNorm()
|
overridevirtual |
Virtual method to plot velocity field distribution.
Note, u=-1..+1 , v= -1..+1 parametric coordinates, except if triangular shell, where u=0..+1, v=0..+1, natural triangle coords.
Implements chrono::fea::ChElementShell.
◆ GetDensity()
|
overridevirtual |
This is needed so that it can be accessed by ChLoaderVolumeGravity.
Density is mass per unit surface.
Implements chrono::ChLoadableUVW.
◆ GetLengthX()
|
inline |
Set the structural damping: this is the Rayleigh "alpha" OBSOLETE create a ChDampingReissnerRayleigh object and add to layer material to have the same effect void SetAlphaDamp(double a) { m_Alpha = a; }
Get the element length in the X direction.
◆ GetStateBlock()
|
overridevirtual |
Fill the D vector with the current field values at thenodes of the element, with proper ordering.
If the D vector has not the size of this->GetNdofs_x(), it will be resized. {x_a y_a z_a Rx_a Rx_a Rx_a x_b y_b z_b Rx_b Ry_b Rz_b}
Implements chrono::fea::ChElementBase.
◆ SetLayerZreferenceCentered()
void chrono::fea::ChElementShellReissner4::SetLayerZreferenceCentered | ( | ) |
Impose the reference z level of shell element as centered along the total thickness.
This is the default behavior each time you call AddLayer(); Note! Use after you added all layers.
◆ SetNodes()
void chrono::fea::ChElementShellReissner4::SetNodes | ( | std::shared_ptr< ChNodeFEAxyzrot > | nodeA, |
std::shared_ptr< ChNodeFEAxyzrot > | nodeB, | ||
std::shared_ptr< ChNodeFEAxyzrot > | nodeC, | ||
std::shared_ptr< ChNodeFEAxyzrot > | nodeD | ||
) |
Specify the nodes of this element.
The node numbering is in ccw fashion as in the following scheme: v ^ D o--—+--—o C | | | –+--—+--—+-> u | | | A o--—+--—o B
Member Data Documentation
◆ xi_i
|
static |
◆ xi_n
|
static |
The documentation for this class was generated from the following files:
- /builds/uwsbel/chrono/src/chrono/fea/ChElementShellReissner4.h
- /builds/uwsbel/chrono/src/chrono/fea/ChElementShellReissner4.cpp