Description
ANCF shell element with four nodes.
The coordinates at each node are the position vector and 3 position vector gradients.
The node numbering is in ccw fashion as in the following scheme:
v ^ | D o-----+-----o C | | | --+-----+-----+----> u | | | A o-----+-----o B
#include <ChElementShellANCF_3443.h>
Classes | |
class | Layer |
Definition of a layer. More... | |
Public Types | |
enum | IntFrcMethod { IntFrcMethod::ContInt, IntFrcMethod::PreInt } |
Internal force calculation method. More... | |
template<typename T , int M, int N> | |
using | ChMatrixNMc = Eigen::Matrix< T, M, N, Eigen::ColMajor > |
using | VectorN = ChVectorN< double, NSF > |
using | Vector3N = ChVectorN< double, 3 *NSF > |
using | VectorNIP = ChVectorN< double, NIP > |
using | Matrix3xN = ChMatrixNM< double, 3, NSF > |
using | MatrixNx3 = ChMatrixNM< double, NSF, 3 > |
using | MatrixNx3c = ChMatrixNMc< double, NSF, 3 > |
using | MatrixNx6 = ChMatrixNM< double, NSF, 6 > |
using | MatrixNxN = ChMatrixNM< double, NSF, NSF > |
Public Member Functions | |
virtual int | GetNnodes () override |
Get the number of nodes used by this element. | |
virtual int | GetNdofs () override |
Get the number of coordinates in the field used by the referenced nodes. | |
virtual int | GetNodeNdofs (int n) override |
Get the number of coordinates from the n-th node used by this element. | |
void | SetNodes (std::shared_ptr< ChNodeFEAxyzDDD > nodeA, std::shared_ptr< ChNodeFEAxyzDDD > nodeB, std::shared_ptr< ChNodeFEAxyzDDD > nodeC, std::shared_ptr< ChNodeFEAxyzDDD > nodeD) |
Specify the nodes of this element. | |
void | SetDimensions (double lenX, double lenY) |
Specify the element dimensions. | |
virtual std::shared_ptr< ChNodeFEAbase > | GetNodeN (int n) override |
Access the n-th node of this element. | |
std::shared_ptr< ChNodeFEAxyzDDD > | GetNodeA () const |
Get a handle to the first node of this element. | |
std::shared_ptr< ChNodeFEAxyzDDD > | GetNodeB () const |
Get a handle to the second node of this element. | |
std::shared_ptr< ChNodeFEAxyzDDD > | GetNodeC () const |
Get a handle to the third node of this element. | |
std::shared_ptr< ChNodeFEAxyzDDD > | GetNodeD () const |
Get a handle to the fourth node of this element. | |
void | AddLayer (double thickness, double theta, std::shared_ptr< ChMaterialShellANCF > material) |
Add a layer. More... | |
size_t | GetNumLayers () const |
Get the number of layers. | |
const Layer & | GetLayer (size_t i) const |
Get a handle to the specified layer. | |
void | SetMidsurfaceOffset (const double offset) |
Offset the midsurface of the composite shell element. More... | |
void | SetAlphaDamp (double a) |
Set the structural damping. | |
double | GetLengthX () const |
Get the element length in the X direction. | |
double | GetLengthY () |
Get the element length in the Y direction. | |
double | GetThicknessZ () |
Get the total thickness of the shell element. | |
void | SetIntFrcCalcMethod (IntFrcMethod method) |
Set the calculation method to use for the generalized internal force and its Jacobian calculations. More... | |
IntFrcMethod | GetIntFrcCalcMethod () |
Return the type of calculation method currently set for the generalized internal force and its Jacobian calculations. | |
ChMatrix33 | GetGreenLagrangeStrain (const double xi, const double eta, const double zeta) |
Get the Green-Lagrange strain tensor at the normalized element coordinates (xi, eta, zeta) at the current state of the element. More... | |
ChMatrix33 | GetPK2Stress (const double layer, const double xi, const double eta, const double layer_zeta) |
Get the 2nd Piola-Kirchoff stress tensor at the normalized layer coordinates (xi, eta, layer_zeta) at the current state of the element for the specified layer number (0 indexed) since the stress can be discontinuous at the layer boundary. More... | |
double | GetVonMissesStress (const double layer, const double xi, const double eta, const double layer_zeta) |
Get the von Mises stress value at the normalized layer coordinates (xi, eta, layer_zeta) at the current state of the element for the specified layer number (0 indexed) since the stress can be discontinuous at the layer boundary. More... | |
virtual void | GetStateBlock (ChVectorDynamic<> &mD) override |
Fill the D vector (column matrix) with the current field values at the nodes of the element, with proper ordering. More... | |
virtual void | Update () override |
Update the state of this element. | |
virtual void | ComputeMmatrixGlobal (ChMatrixRef M) override |
Set M equal to the global mass matrix. | |
virtual void | ComputeNodalMass () override |
Add contribution of element inertia to total nodal masses. | |
virtual void | ComputeInternalForces (ChVectorDynamic<> &Fi) override |
Compute the generalized internal force vector for the current nodal coordinates as set the value in the Fi vector. | |
virtual void | ComputeKRMmatricesGlobal (ChMatrixRef H, double Kfactor, double Rfactor=0, double Mfactor=0) override |
Set H as a linear combination of M, K, and R. More... | |
virtual void | ComputeGravityForces (ChVectorDynamic<> &Fg, const ChVector<> &G_acc) override |
Compute the generalized force vector due to gravity using the efficient ANCF specific method. | |
virtual void | EvaluateSectionDisplacement (const double xi, const double eta, ChVector<> &u_displ, ChVector<> &u_rotaz) override |
Gets the xyz displacement of a point on the shell midsurface, and the rotation RxRyRz of section plane, at abscissa '(xi,eta,0)'. | |
virtual void | EvaluateSectionFrame (const double xi, const double eta, ChVector<> &point, ChQuaternion<> &rot) override |
Gets the absolute xyz position of a point on the shell midsurface, and the absolute rotation of section plane, at abscissa '(xi,eta,0)'. More... | |
virtual void | EvaluateSectionPoint (const double xi, const double eta, ChVector<> &point) override |
Gets the absolute xyz position of a point on the shell midsurface specified in normalized coordinates. | |
virtual void | EvaluateSectionVelNorm (const double xi, const double eta, ChVector<> &Result) override |
Gets the absolute xyz velocity of a point on the shell midsurface specified in normalized coordinates. | |
virtual int | LoadableGet_ndof_x () override |
Gets the number of DOFs affected by this element (position part). | |
virtual int | LoadableGet_ndof_w () override |
Gets the number of DOFs affected by this element (velocity part). | |
virtual void | LoadableGetStateBlock_x (int block_offset, ChState &mD) override |
Gets all the DOFs packed in a single vector (position part). | |
virtual void | LoadableGetStateBlock_w (int block_offset, ChStateDelta &mD) override |
Gets all the DOFs packed in a single vector (velocity part). | |
virtual void | LoadableStateIncrement (const unsigned int off_x, ChState &x_new, const ChState &x, const unsigned int off_v, const ChStateDelta &Dv) override |
Increment all DOFs using a delta. | |
virtual int | Get_field_ncoords () override |
Number of coordinates in the interpolated field, ex=3 for a tetrahedron finite element or a cable, = 1 for a thermal problem, etc. | |
virtual int | GetSubBlocks () override |
Tell the number of DOFs blocks (ex. =1 for a body, =4 for a tetrahedron, etc.) | |
virtual unsigned int | GetSubBlockOffset (int nblock) override |
Get the offset of the i-th sub-block of DOFs in global vector. | |
virtual unsigned int | GetSubBlockSize (int nblock) override |
Get the size of the i-th sub-block of DOFs in global vector. | |
virtual bool | IsSubBlockActive (int nblock) const override |
Check if the specified sub-block of DOFs is active. | |
virtual void | LoadableGetVariables (std::vector< ChVariables * > &mvars) override |
Get the pointers to the contained ChVariables, appending to the mvars vector. | |
virtual void | ComputeNF (const double xi, const double eta, ChVectorDynamic<> &Qi, double &detJ, const ChVectorDynamic<> &F, ChVectorDynamic<> *state_x, ChVectorDynamic<> *state_w) override |
Evaluate N'*F , where N is some type of shape function evaluated at xi,eta coordinates of the midsurface, each ranging in -1..+1 F is a load, N'*F is the resulting generalized load Returns also det[J] with J=[dx/du,..], that might be useful in gauss quadrature. More... | |
virtual void | ComputeNF (const double xi, const double eta, const double zeta, ChVectorDynamic<> &Qi, double &detJ, const ChVectorDynamic<> &F, ChVectorDynamic<> *state_x, ChVectorDynamic<> *state_w) override |
Evaluate N'*F , where N is some type of shape function evaluated at xi,eta,zeta coordinates of the volume, each ranging in -1..+1 F is a load, N'*F is the resulting generalized load Returns also det[J] with J=[dx/du,..], that might be useful in gauss quadrature. More... | |
virtual double | GetDensity () override |
This is needed so that it can be accessed by ChLoaderVolumeGravity. More... | |
virtual ChVector | ComputeNormal (const double xi, const double eta) override |
Gets the normal to the surface at the parametric coordinate xi,eta. More... | |
Public Member Functions inherited from chrono::fea::ChElementShell | |
virtual bool | IsTriangleShell () |
Return false if quadrilateral shell - hence u,v parametric coordinates assumed in -1..+1, return true if triangular shell - hence u,v are triangle natural coordinates assumed in 0..+1. | |
Public Member Functions inherited from chrono::fea::ChElementGeneric | |
ChKblockGeneric & | Kstiffness () |
Access the proxy to stiffness, for sparse solver. | |
virtual void | EleIntLoadResidual_F (ChVectorDynamic<> &R, const double c) override |
(This is a default (a bit unoptimal) book keeping so that in children classes you can avoid implementing this EleIntLoadResidual_F function, unless you need faster code) | |
virtual void | EleIntLoadResidual_Mv (ChVectorDynamic<> &R, const ChVectorDynamic<> &w, const double c) override |
(This is a default (VERY UNOPTIMAL) book keeping so that in children classes you can avoid implementing this EleIntLoadResidual_Mv function, unless you need faster code.) | |
virtual void | EleIntLoadResidual_F_gravity (ChVectorDynamic<> &R, const ChVector<> &G_acc, const double c) override |
(This is a default (VERY UNOPTIMAL) book keeping so that in children classes you can avoid implementing this EleIntLoadResidual_F_gravity function, unless you need faster code. More... | |
virtual void | InjectKRMmatrices (ChSystemDescriptor &mdescriptor) override |
Tell to a system descriptor that there are item(s) of type ChKblock in this object (for further passing it to a solver) | |
virtual void | KRMmatricesLoad (double Kfactor, double Rfactor, double Mfactor) override |
Adds the current stiffness K and damping R and mass M matrices in encapsulated ChKblock item(s), if any. More... | |
virtual void | VariablesFbLoadInternalForces (double factor=1.) override |
Adds the internal forces, expressed as nodal forces, into the encapsulated ChVariables, in the 'fb' part: qf+=forces*factor (This is a default (a bit unoptimal) book keeping so that in children classes you can avoid implementing this VariablesFbLoadInternalForces function, unless you need faster code) | |
virtual void | VariablesFbIncrementMq () override |
Adds M*q (internal masses multiplied current 'qb') to Fb, ex. More... | |
Public Member Functions inherited from chrono::fea::ChElementBase | |
virtual void | EleDoIntegration () |
This is optionally implemented if there is some internal state that requires integration. | |
Public Member Functions inherited from chrono::ChLoadableUV | |
virtual bool | IsTriangleIntegrationNeeded () |
If true, use quadrature over u,v in [0..1] range as triangle area coords (with z=1-u-v) otherwise use default quadrature over u,v in [-1..+1] as rectangular isoparametric coords. | |
Public Member Functions inherited from chrono::ChLoadableUVW | |
virtual bool | IsTetrahedronIntegrationNeeded () |
If true, use quadrature over u,v,w in [0..1] range as tetrahedron volumetric coords (with z=1-u-v-w) otherwise use default quadrature over u,v,w in [-1..+1] as box isoparametric coords. | |
virtual bool | IsTrianglePrismIntegrationNeeded () |
If true, use quadrature over u,v in [0..1] range as triangle natural coords (with z=1-u-v), and use linear quadrature over w in [-1..+1], otherwise use default quadrature over u,v,w in [-1..+1] as box isoparametric coords. | |
Static Public Attributes | |
static const int | NP = 4 |
number of Gauss quadrature points for each midsurface direction | |
static const int | NT = 2 |
number of quadrature points through the thickness | |
static const int | NIP = NP * NP * NT |
number of Gauss quadrature points | |
static const int | NSF = 16 |
number of shape functions | |
Additional Inherited Members | |
Protected Attributes inherited from chrono::fea::ChElementShell | |
double | mass |
Protected Attributes inherited from chrono::fea::ChElementGeneric | |
ChKblockGeneric | Kmatr |
Member Enumeration Documentation
◆ IntFrcMethod
Member Function Documentation
◆ AddLayer()
void chrono::fea::ChElementShellANCF_3443::AddLayer | ( | double | thickness, |
double | theta, | ||
std::shared_ptr< ChMaterialShellANCF > | material | ||
) |
Add a layer.
Layers should be added prior to the start of the simulation since can be a significant amount of pre-calculation overhead required.
- Parameters
-
thickness layer thickness theta fiber angle (radians) material layer material
◆ ComputeKRMmatricesGlobal()
|
overridevirtual |
Set H as a linear combination of M, K, and R.
H = Mfactor * [M] + Kfactor * [K] + Rfactor * [R], where [M] is the mass matrix, [K] is the stiffness matrix, and [R] is the damping matrix.
Implements chrono::fea::ChElementBase.
◆ ComputeNF() [1/2]
|
overridevirtual |
Evaluate N'*F , where N is some type of shape function evaluated at xi,eta coordinates of the midsurface, each ranging in -1..+1 F is a load, N'*F is the resulting generalized load Returns also det[J] with J=[dx/du,..], that might be useful in gauss quadrature.
For this ANCF element, only the first 6 entries in F are used in the calculation. The first three entries is the applied force in global coordinates and the second 3 entries is the applied moment in global space.
- Parameters
-
xi parametric coordinate in surface eta parametric coordinate in surface Qi Return result of Q = N'*F here detJ Return det[J] here F Input F vector, size is =n. field coords. state_x if != 0, update state (pos. part) to this, then evaluate state_w if != 0, update state (speed part) to this, then evaluate
Implements chrono::ChLoadableUV.
◆ ComputeNF() [2/2]
|
overridevirtual |
Evaluate N'*F , where N is some type of shape function evaluated at xi,eta,zeta coordinates of the volume, each ranging in -1..+1 F is a load, N'*F is the resulting generalized load Returns also det[J] with J=[dx/du,..], that might be useful in gauss quadrature.
For this ANCF element, only the first 6 entries in F are used in the calculation. The first three entries is the applied force in global coordinates and the second 3 entries is the applied moment in global space.
- Parameters
-
xi parametric coordinate in volume eta parametric coordinate in volume zeta parametric coordinate in volume Qi Return result of N'*F here, maybe with offset block_offset detJ Return det[J] here F Input F vector, size is = n.field coords. state_x if != 0, update state (pos. part) to this, then evaluate Q state_w if != 0, update state (speed part) to this, then evaluate Q
Implements chrono::ChLoadableUVW.
◆ ComputeNormal()
|
overridevirtual |
Gets the normal to the surface at the parametric coordinate xi,eta.
Each coordinate ranging in -1..+1.
Implements chrono::ChLoadableUV.
◆ EvaluateSectionFrame()
|
overridevirtual |
Gets the absolute xyz position of a point on the shell midsurface, and the absolute rotation of section plane, at abscissa '(xi,eta,0)'.
Note, nodeA = (xi=-1, eta=-1) Note, nodeB = (xi=1, eta=-1) Note, nodeC = (xi=1, eta=1) Note, nodeD = (xi=-1, eta=1)
Implements chrono::fea::ChElementShell.
◆ GetDensity()
|
overridevirtual |
This is needed so that it can be accessed by ChLoaderVolumeGravity.
Density is the average mass per unit volume for the entire shell in the reference state of the element.
Implements chrono::ChLoadableUVW.
◆ GetGreenLagrangeStrain()
ChMatrix33 chrono::fea::ChElementShellANCF_3443::GetGreenLagrangeStrain | ( | const double | xi, |
const double | eta, | ||
const double | zeta | ||
) |
Get the Green-Lagrange strain tensor at the normalized element coordinates (xi, eta, zeta) at the current state of the element.
Normalized element coordinates span from -1 to 1.
◆ GetPK2Stress()
ChMatrix33 chrono::fea::ChElementShellANCF_3443::GetPK2Stress | ( | const double | layer, |
const double | xi, | ||
const double | eta, | ||
const double | layer_zeta | ||
) |
Get the 2nd Piola-Kirchoff stress tensor at the normalized layer coordinates (xi, eta, layer_zeta) at the current state of the element for the specified layer number (0 indexed) since the stress can be discontinuous at the layer boundary.
"layer_zeta" spans -1 to 1 from the bottom surface to the top surface
◆ GetStateBlock()
|
overridevirtual |
Fill the D vector (column matrix) with the current field values at the nodes of the element, with proper ordering.
If the D vector has not the size of this->GetNdofs(), it will be resized. {Pos_a Du_a Dv_a Dw_a Pos_b Du_b Dv_b Dw_b Pos_c Du_c Dv_c Dw_c Pos_d Du_d Dv_d Dw_d}
Implements chrono::fea::ChElementBase.
◆ GetVonMissesStress()
double chrono::fea::ChElementShellANCF_3443::GetVonMissesStress | ( | const double | layer, |
const double | xi, | ||
const double | eta, | ||
const double | layer_zeta | ||
) |
Get the von Mises stress value at the normalized layer coordinates (xi, eta, layer_zeta) at the current state of the element for the specified layer number (0 indexed) since the stress can be discontinuous at the layer boundary.
"layer_zeta" spans -1 to 1 from the bottom surface to the top surface
◆ SetIntFrcCalcMethod()
void chrono::fea::ChElementShellANCF_3443::SetIntFrcCalcMethod | ( | IntFrcMethod | method | ) |
Set the calculation method to use for the generalized internal force and its Jacobian calculations.
This should be set prior to the start of the simulation since can be a significant amount of pre-calculation overhead required.
◆ SetMidsurfaceOffset()
void chrono::fea::ChElementShellANCF_3443::SetMidsurfaceOffset | ( | const double | offset | ) |
Offset the midsurface of the composite shell element.
A positive value shifts the element's midsurface upward along the elements zeta direction. The offset should be provided in model units.
The documentation for this class was generated from the following files:
- /builds/uwsbel/chrono/src/chrono/fea/ChElementShellANCF_3443.h
- /builds/uwsbel/chrono/src/chrono/fea/ChElementShellANCF_3443.cpp