Description
template<class Ta, class Tb>
class chrono::ChConstraintTwoTuples< Ta, Tb >
This constraint is built on top of two ChConstraintTuple objects, each with a tuple of 1 or 2 or 3 differently-sized jacobian chunks.
For instance, this might happen because you want a constraint between an edge (i.e. two xyz variables, each per end nodes) and a triangle face (i.e. three xyz variables, each per corner), so the jacobian row matrix is split in 2 + 3 chunks, here as two tuples. Templates Ta and Tb are of ChVariableTupleCarrier_Nvars classes
#include <ChConstraintTwoTuples.h>
Public Member Functions | |
ChConstraintTwoTuples () | |
Default constructor. | |
ChConstraintTwoTuples (const ChConstraintTwoTuples &other) | |
Copy constructor. | |
virtual ChConstraintTwoTuples * | Clone () const override |
"Virtual" copy constructor (covariant return type). | |
ChConstraintTwoTuples & | operator= (const ChConstraintTwoTuples &other) |
Assignment operator: copy from other object. | |
type_constraint_tuple_a & | Get_tuple_a () |
Access tuple a. | |
type_constraint_tuple_b & | Get_tuple_b () |
Access tuple b. | |
virtual void | Update_auxiliary () override |
This function must update jacobians and auxiliary data such as the 'g_i' product. More... | |
virtual double | Compute_Cq_q () override |
This function must computes the product between the row-jacobian of this constraint '[Cq_i]' and the vector of variables, 'v'. More... | |
virtual void | Increment_q (const double deltal) override |
This function must increment the vector of variables 'v' with the quantity [invM]*[Cq_i]'deltal,that is v+=[invM][Cq_i]'*deltal or better: v+=[Eq_i]*deltal This is used for some iterative solvers. | |
virtual void | MultiplyAndAdd (double &result, const ChVectorDynamic< double > &vect) const override |
Computes the product of the corresponding block in the system matrix by 'vect', and add to 'result'. More... | |
virtual void | MultiplyTandAdd (ChVectorDynamic< double > &result, double l) override |
Computes the product of the corresponding transposed blocks in the system matrix (ie. More... | |
virtual void | Build_Cq (ChSparseMatrix &storage, int insrow) override |
Puts the two jacobian parts into the 'insrow' row of a sparse matrix, where both portions of the jacobian are shifted in order to match the offset of the corresponding ChVariable.The same is done on the 'insrow' column, so that the sparse matrix is kept symmetric. | |
virtual void | Build_CqT (ChSparseMatrix &storage, int inscol) override |
Same as Build_Cq, but puts the transposed jacobian row as a column. | |
Public Member Functions inherited from chrono::ChConstraint | |
ChConstraint () | |
Default constructor. | |
ChConstraint (const ChConstraint &other) | |
Copy constructor. | |
ChConstraint & | operator= (const ChConstraint &other) |
Assignment operator: copy from other object. | |
bool | operator== (const ChConstraint &other) const |
Comparison (compares only flags, not the jacobians etc.) | |
virtual bool | IsValid () const |
Tells if the constraint data is currently valid. | |
virtual void | SetValid (bool mon) |
Use this function to set the valid state (child class Children classes must use this function depending on the result of their implementations of RestoreReference();. | |
virtual bool | IsDisabled () const |
Tells if the constraint is currently turned on or off by the user. | |
virtual void | SetDisabled (bool mon) |
User can use this to enable/disable the constraint as desired. | |
virtual bool | IsRedundant () const |
Tells if the constraint is redundant or singular. | |
virtual void | SetRedundant (bool mon) |
Solvers may use the following to mark a constraint as redundant. | |
virtual bool | IsBroken () const |
Tells if the constraint is broken, for excess of pulling/pushing. | |
virtual void | SetBroken (bool mon) |
3rd party software can set the 'broken' status via this method (by default, constraints never break); | |
virtual bool | IsUnilateral () const |
Tells if the constraint is unilateral (typical complementarity constraint). | |
virtual bool | IsLinear () const |
Tells if the constraint is linear (if non linear, returns false). | |
eChConstraintMode | GetMode () const |
Gets the mode of the constraint: free / lock / complementary A typical constraint has 'lock = true' by default. | |
void | SetMode (eChConstraintMode mmode) |
Sets the mode of the constraint: free / lock / complementary. | |
virtual bool | IsActive () const |
Tells if the constraint is currently active, in general, that is tells if it must be included into the system solver or not. More... | |
virtual void | SetActive (bool isactive) |
Set the status of the constraint to active. | |
virtual double | Compute_c_i () |
Compute the residual of the constraint using the LINEAR expression. More... | |
double | Get_c_i () const |
Return the residual 'c_i' of this constraint. // CURRENTLY NOT USED. | |
void | Set_b_i (const double mb) |
Sets the known term b_i in [Cq_i]*q + b_i = 0, where: c_i = [Cq_i]*q + b_i = 0. | |
double | Get_b_i () const |
Return the known term b_i in [Cq_i]*q + b_i = 0, where: c_i= [Cq_i]*q + b_i = 0. | |
void | Set_cfm_i (const double mcfm) |
Sets the constraint force mixing term (default=0). More... | |
double | Get_cfm_i () const |
Returns the constraint force mixing term. | |
virtual void | Set_l_i (double ml_i) |
Sets the 'l_i' value (constraint reaction, see 'l' vector) | |
virtual double | Get_l_i () const |
Return the 'l_i' value (constraint reaction, see 'l' vector) | |
double | Get_g_i () const |
Return the 'g_i' product , that is [Cq_i]*[invM_i]*[Cq_i]' (+cfm) | |
void | Set_g_i (double m_g_i) |
Usually you should not use the Set_g_i function, because g_i should be automatically computed during the Update_auxiliary() . | |
virtual void | Project () |
For iterative solvers: project the value of a possible 'l_i' value of constraint reaction onto admissible orthant/set. More... | |
virtual double | Violation (double mc_i) |
Given the residual of the constraint computed as the linear map mc_i = [Cq]*q + b_i + cfm*l_i , returns the violation of the constraint, considering inequalities, etc. More... | |
void | SetOffset (int moff) |
Set offset in global q vector (set automatically by ChSystemDescriptor) | |
int | GetOffset () const |
Get offset in global q vector. | |
virtual void | ArchiveOUT (ChArchiveOut &marchive) |
Method to allow serialization of transient data to archives. | |
virtual void | ArchiveIN (ChArchiveIn &marchive) |
Method to allow de-serialization of transient data from archives. | |
Protected Attributes | |
type_constraint_tuple_a | tuple_a |
type_constraint_tuple_b | tuple_b |
Protected Attributes inherited from chrono::ChConstraint | |
double | c_i |
The 'c_i' residual of the constraint (if satisfied, c must be 0) | |
double | l_i |
The 'l_i' lagrangian multiplier (reaction) | |
double | b_i |
The 'b_i' right term in [Cq_i]*q+b_i=0 , note: c_i= [Cq_i]*q + b_i. | |
double | cfm_i |
The constraint force mixing, if needed (usually is zero) to add some numerical 'compliance' in the constraint, that is the equation becomes: c_i= [Cq_i]*q + b_i + cfm*l_i =0; Example, it could be cfm = [k * h^2](^-1) where k is stiffness. | |
eChConstraintMode | mode |
mode of the constraint: free / lock / complementar | |
double | g_i |
'g_i' product [Cq_i]*[invM_i]*[Cq_i]' (+cfm) | |
int | offset |
offset in global "l" state vector (needed by some solvers) | |
Member Function Documentation
◆ Compute_Cq_q()
|
inlineoverridevirtual |
This function must computes the product between the row-jacobian of this constraint '[Cq_i]' and the vector of variables, 'v'.
that is CV=[Cq_i]*v This is used for some iterative solvers.
Implements chrono::ChConstraint.
◆ MultiplyAndAdd()
|
inlineoverridevirtual |
Computes the product of the corresponding block in the system matrix by 'vect', and add to 'result'.
NOTE: the 'vect' vector must already have the size of the total variables&constraints in the system; the procedure will use the ChVariable offsets (that must be already updated) to know the indexes in result and vect;
Implements chrono::ChConstraint.
◆ MultiplyTandAdd()
|
inlineoverridevirtual |
Computes the product of the corresponding transposed blocks in the system matrix (ie.
the TRANSPOSED jacobian matrix C_q') by 'l', and add to 'result'. NOTE: the 'result' vector must already have the size of the total variables&constraints in the system; the procedure will use the ChVariable offsets (that must be already updated) to know the indexes in result and vect;
Implements chrono::ChConstraint.
◆ Update_auxiliary()
|
inlineoverridevirtual |
This function must update jacobians and auxiliary data such as the 'g_i' product.
This function is often called by solvers at the beginning of the solution process. *** This function MUST BE OVERRIDDEN by specialized inherited classes, which have some jacobians!
Reimplemented from chrono::ChConstraint.
The documentation for this class was generated from the following file:
- /builds/uwsbel/chrono/src/chrono/solver/ChConstraintTwoTuples.h