Introduction to FEA beams (demo_FEA_beamsEuler.cpp)

Tutorial that teaches how to use the FEA module to create basic FEA beams, performing dynamics (non-linear vibration analysis).

// =============================================================================
// PROJECT CHRONO - http://projectchrono.org
//
// Copyright (c) 2014 projectchrono.org
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file at the top level of the distribution and at
// http://projectchrono.org/license-chrono.txt.
//
// =============================================================================
// Authors: Alessandro Tasora
// =============================================================================
//
// FEA for 3D beams
//
// =============================================================================
#include "chrono/physics/ChSystemSMC.h"
#include "chrono/physics/ChLinkMate.h"
#include "chrono/physics/ChBodyEasy.h"
#include "chrono/timestepper/ChTimestepper.h"
#include "chrono/solver/ChIterativeSolverLS.h"
#include "chrono/fea/ChElementBeamEuler.h"
#include "chrono/fea/ChBuilderBeam.h"
#include "chrono/fea/ChMesh.h"
#include "chrono/assets/ChVisualShapeFEA.h"
#include "chrono/fea/ChLinkNodeFrame.h"
#include "chrono/fea/ChLinkNodeSlopeFrame.h"
#include "chrono_irrlicht/ChVisualSystemIrrlicht.h"
using namespace chrono;
using namespace chrono::fea;
using namespace chrono::irrlicht;
int main(int argc, char* argv[]) {
std::cout << "Copyright (c) 2017 projectchrono.org\nChrono version: " << CHRONO_VERSION << std::endl;
// Create a Chrono::Engine physical system
// Create a mesh, that is a container for groups
// of elements and their referenced nodes.
auto my_mesh = chrono_types::make_shared<ChMesh>();
// Create a section, i.e. thickness and material properties
// for beams. This will be shared among some beams.
auto msection = chrono_types::make_shared<ChBeamSectionEulerAdvanced>();
double beam_wy = 0.012;
double beam_wz = 0.025;
msection->SetAsRectangularSection(beam_wy, beam_wz);
msection->SetYoungModulus(0.01e9);
msection->SetShearModulus(0.01e9 * 0.3);
msection->SetRayleighDamping(0.000);
// msection->SetCentroid(0,0.02);
// msection->SetShearCenter(0,0.1);
// msection->SetSectionRotation(45*CH_RAD_TO_DEG);
// These are for the external loads (define here to help using ChStaticNonLinearIncremental later)
ChVector3d F_node_1(9, 2, 0);
ChVector3d F_node_2(0, -2, 0);
std::shared_ptr<ChNodeFEAxyzrot> loaded_node_1;
std::shared_ptr<ChNodeFEAxyzrot> loaded_node_2;
//
// Add some EULER-BERNOULLI BEAMS:
//
double beam_L = 0.1;
auto hnode1 = chrono_types::make_shared<ChNodeFEAxyzrot>(ChFrame<>(ChVector3d(0, 0, 0)));
auto hnode2 = chrono_types::make_shared<ChNodeFEAxyzrot>(ChFrame<>(ChVector3d(beam_L, 0, 0)));
auto hnode3 = chrono_types::make_shared<ChNodeFEAxyzrot>(ChFrame<>(ChVector3d(beam_L * 2, 0, 0)));
my_mesh->AddNode(hnode1);
my_mesh->AddNode(hnode2);
my_mesh->AddNode(hnode3);
auto belement1 = chrono_types::make_shared<ChElementBeamEuler>();
belement1->SetNodes(hnode1, hnode2);
belement1->SetSection(msection);
my_mesh->AddElement(belement1);
auto belement2 = chrono_types::make_shared<ChElementBeamEuler>();
belement2->SetNodes(hnode2, hnode3);
belement2->SetSection(msection);
my_mesh->AddElement(belement2);
// Apply a force or a torque to a node:
loaded_node_1 = hnode2;
loaded_node_1->SetForce(F_node_1);
// Fix a node to ground:
// hnode1->SetFixed(true);
auto mtruss = chrono_types::make_shared<ChBody>();
mtruss->SetFixed(true);
sys.Add(mtruss);
auto constr_bc = chrono_types::make_shared<ChLinkMateFix>();
constr_bc->Initialize(hnode3, mtruss, false, hnode3->Frame(), hnode3->Frame());
sys.Add(constr_bc);
auto constr_d = chrono_types::make_shared<ChLinkMateGeneric>();
constr_d->Initialize(hnode1, mtruss, false, hnode1->Frame(), hnode1->Frame());
sys.Add(constr_d);
constr_d->SetConstrainedCoords(false, true, true, // x, y, z
false, false, false); // Rx, Ry, Rz
//
// Add some EULER-BERNOULLI BEAMS (the fast way!)
//
// Shortcut!
// This ChBuilderBeamEuler helper object is very useful because it will
// subdivide 'beams' into sequences of finite elements of beam type, ex.
// one 'beam' could be made of 5 FEM elements of ChElementBeamEuler class.
// If new nodes are needed, it will create them for you.
// Now, simply use BuildBeam to create a beam from a point to another:
builder.BuildBeam(my_mesh, // the mesh where to put the created nodes and elements
msection, // the ChBeamSectionEulerAdvanced to use for the ChElementBeamEuler elements
5, // the number of ChElementBeamEuler to create
ChVector3d(0, 0, -0.1), // the 'A' point in space (beginning of beam)
ChVector3d(0.2, 0, -0.1), // the 'B' point in space (end of beam)
ChVector3d(0, 1, 0)); // the 'Y' up direction of the section for the beam
// After having used BuildBeam(), you can retrieve the nodes used for the beam.
// For example say you want to fix the A end and apply a force to the B end:
builder.GetLastBeamNodes().back()->SetFixed(true);
loaded_node_2 = builder.GetLastBeamNodes().front();
loaded_node_2->SetForce(F_node_2);
// Again, use BuildBeam for creating another beam, this time it uses one node (the last node created by the last
// beam) and one point:
builder.BuildBeam(my_mesh, msection, 5,
builder.GetLastBeamNodes().front(), // the 'A' node in space (beginning of beam)
ChVector3d(0.2, 0.1, -0.1), // the 'B' point in space (end of beam)
ChVector3d(0, 1, 0)); // the 'Y' up direction of the section for the beam
// No gravity effect on FEA elements in this demo
my_mesh->SetAutomaticGravity(false);
// Remember to add the mesh to the system!
sys.Add(my_mesh);
// Visualization of the FEM mesh.
// This will automatically update a triangle mesh (a ChVisualShapeTriangleMesh asset that is internally managed) by
// setting proper coordinates and vertex colors as in the FEM elements. Such a triangle mesh can be rendered by
// Irrlicht or POVray or whatever postprocessor that can handle a colored ChVisualShapeTriangleMesh).
/*
auto mvisualizebeamA = chrono_types::make_shared<ChVisualShapeFEA>(my_mesh);
mvisualizebeamA->SetFEMdataType(ChVisualShapeFEA::DataType::SURFACE);
mvisualizebeamA->SetSmoothFaces(true);
my_mesh->AddVisualShapeFEA(mvisualizebeamA);
*/
auto mvisualizebeamA = chrono_types::make_shared<ChVisualShapeFEA>(my_mesh);
mvisualizebeamA->SetFEMdataType(ChVisualShapeFEA::DataType::ELEM_BEAM_MZ);
mvisualizebeamA->SetColorscaleMinMax(-0.4, 0.4);
mvisualizebeamA->SetSmoothFaces(true);
mvisualizebeamA->SetWireframe(false);
my_mesh->AddVisualShapeFEA(mvisualizebeamA);
auto mvisualizebeamC = chrono_types::make_shared<ChVisualShapeFEA>(my_mesh);
mvisualizebeamC->SetFEMglyphType(ChVisualShapeFEA::GlyphType::NODE_CSYS);
mvisualizebeamC->SetFEMdataType(ChVisualShapeFEA::DataType::NONE);
mvisualizebeamC->SetSymbolsThickness(0.006);
mvisualizebeamC->SetSymbolsScale(0.01);
mvisualizebeamC->SetZbufferHide(false);
my_mesh->AddVisualShapeFEA(mvisualizebeamC);
// Create the Irrlicht visualization system
auto vis = chrono_types::make_shared<ChVisualSystemIrrlicht>();
vis->SetWindowSize(800, 600);
vis->SetWindowTitle("Euler Beams");
vis->Initialize();
vis->AddLogo();
vis->AddSkyBox();
vis->AddTypicalLights();
vis->AddCamera(ChVector3d(-0.1, 0.2, -0.2));
vis->AttachSystem(&sys);
// THE SIMULATION LOOP
auto solver = chrono_types::make_shared<ChSolverMINRES>();
sys.SetSolver(solver);
solver->SetMaxIterations(500);
solver->SetTolerance(1e-14);
solver->EnableDiagonalPreconditioner(true);
solver->EnableWarmStart(true); // IMPORTANT for convergence when using EULER_IMPLICIT_LINEARIZED
solver->SetVerbose(false);
solver->SetTolerance(1e-14);
// Change type of integrator
/*
auto stepper = chrono_types::make_shared<ChTimestepperHHT>();
sys.SetTimestepper(stepper);
stepper->SetAlpha(-0.2);
stepper->SetMaxIters(6);
stepper->SetAbsTolerances(1e-12);
stepper->SetVerbose(true);
stepper->SetStepControl(false);
*/
sys.SetTimestepperType(ChTimestepper::Type::EULER_IMPLICIT_LINEARIZED);
std::cout << "\n\n===========STATICS======== \n" << std::endl;
if (false) {
std::cout << "BEAM RESULTS (LINEAR STATIC ANALYSIS)\n" << std::endl;
}
if (false) {
std::cout << "BEAM RESULTS (NON-LINEAR STATIC ANALYSIS, basic)\n" << std::endl;
}
if (true) {
std::cout << "BEAM RESULTS (NON-LINEAR STATIC INCREMENTAL ANALYSIS)\n" << std::endl;
// Instead of using sys.DoStaticNonLinear(), which is quite basic, we will use ChStaticNonLinearIncremental.
// This requires a custom callback for incrementing the external loads:
public:
// Perform updates on the model. This is called before each load scaling.
// Here we will update all "external" relevan loads.
virtual void OnLoadScaling(const double load_scaling, // ranging from 0 to 1
const int iteration_n, // actual number of load step
ChStaticNonLinearIncremental* analysis // back-pointer to this analysis
) {
// Scale the external loads. In our example, just two forces.
// Note: if gravity is used, consider scaling also gravity effect, e.g:
// sys.SetGravitationalAcceleration(load_scaling * ChVector3d(0,-9.8,0))
cb_loaded_node_1->SetForce(load_scaling * cb_F_node_1);
cb_loaded_node_2->SetForce(load_scaling * cb_F_node_2);
}
// helper data for the callback
ChVector3d cb_F_node_1;
ChVector3d cb_F_node_2;
std::shared_ptr<ChNodeFEAxyzrot> cb_loaded_node_1;
std::shared_ptr<ChNodeFEAxyzrot> cb_loaded_node_2;
};
// Create the callback object, and set some helper data structures.
auto my_load_callback = chrono_types::make_shared<MyCallback>();
my_load_callback->cb_loaded_node_1 = loaded_node_1;
my_load_callback->cb_loaded_node_2 = loaded_node_2;
my_load_callback->cb_F_node_1 = F_node_1;
my_load_callback->cb_F_node_2 = F_node_2;
// Create the nonlinear static analysis for incremental external loads.
static_analysis.SetLoadIncrementCallback(my_load_callback);
static_analysis.SetVerbose(true);
// outer loop. More steps helps the inner Newton loop that will need less iterations, but maybe slower.
static_analysis.SetIncrementalSteps(8);
// inner loop (Newton iterations). In good situations should converge with 5-20 iterations.
static_analysis.SetMaxIterationsNewton(20);
// check Newton monotonicity after 1 step, reduce stepsize if not met.
static_analysis.SetAdaptiveNewtonON(1, 1.0);
// slower than default 1.0, but avoids the risk of using too much the adaptive Newton stepsize
static_analysis.SetNewtonDamping(0.75);
static_analysis.SetResidualTolerance(1e-7);
// Do the nonlinear statics.
sys.DoStaticAnalysis(static_analysis);
}
ChVector3d F, M;
belement1->GetStateBlock(displ);
std::cout << displ;
for (double eta = -1; eta <= 1; eta += 0.4) {
belement1->EvaluateSectionForceTorque(eta, F, M);
std::cout << " b1_at " << eta << " Mx=" << M.x() << " My=" << M.y() << " Mz=" << M.z() << " Tx=" << F.x()
<< " Ty=" << F.y() << " Tz=" << F.z() << std::endl;
}
std::cout << std::endl;
belement2->GetStateBlock(displ);
for (double eta = -1; eta <= 1; eta += 0.4) {
belement2->EvaluateSectionForceTorque(eta, F, M);
std::cout << " b2_at " << eta << " Mx=" << M.x() << " My=" << M.y() << " Mz=" << M.z() << " Tx=" << F.x()
<< " Ty=" << F.y() << " Tz=" << F.z() << std::endl;
}
std::cout << "Node 3 coordinate x= " << hnode3->Frame().GetPos().x() << " y=" << hnode3->Frame().GetPos().y()
<< " z=" << hnode3->Frame().GetPos().z() << std::endl
<< std::endl;
while (vis->Run()) {
vis->BeginScene();
vis->Render();
vis->EndScene();
sys.DoStepDynamics(0.001);
}
return 0;
}
void SetAdaptiveNewtonON(int initial_delay, double growth_tolerance)
Enable the adaptive size in the inner Newton loop.
Definition: ChStaticAnalysis.cpp:792
void Add(std::shared_ptr< ChPhysicsItem > item)
Attach an arbitrary ChPhysicsItem (e.g.
Definition: ChSystem.cpp:196
bool DoStaticAnalysis(ChStaticAnalysis &analysis)
Perform a generic static analysis.
Definition: ChSystem.cpp:1768
bool DoStaticLinear()
Solve the position of static equilibrium (and the reactions).
Definition: ChSystem.cpp:1790
void SetVerbose(bool verbose)
Enable/disable verbose output (default: false)
Definition: ChStaticAnalysis.h:202
Representation of a 3D transform.
Definition: ChFrame.h:33
Utility class for creating complex beams using ChElementBeamEuler elements, for example subdivides a ...
Definition: ChBuilderBeam.h:42
Namespace with classes for the Irrlicht module.
Definition: ChApiIrr.h:47
void SetIncrementalSteps(int incr_steps)
Set the number of outer iterations that will increment the external load in stepwise manner.
Definition: ChStaticAnalysis.cpp:788
Nonlinear static analysis where the user can define external load(s) that will be incremented gradual...
Definition: ChStaticAnalysis.h:196
void SetNewtonDamping(double damping_factor)
Set damping of the Newton iteration.
Definition: ChStaticAnalysis.cpp:801
bool DoStaticNonlinear(int nsteps=10, bool verbose=false)
Solve the position of static equilibrium (and the reactions).
Definition: ChSystem.cpp:1850
Real & x()
Access to components.
Definition: ChVector3.h:49
void SetMaxIterationsNewton(int max_newton_iters)
Set the max number of inner iterations for the Newton Raphson procedure (default: 5),...
Definition: ChStaticAnalysis.cpp:784
int DoStepDynamics(double step_size)
Advance the dynamics simulation by a single time step of given length.
Definition: ChSystem.cpp:1632
Class for a physical system in which contact is modeled using a smooth (penalty-based) method.
Definition: ChSystemSMC.h:30
void BuildBeam(std::shared_ptr< ChMesh > mesh, std::shared_ptr< ChBeamSectionEuler > sect, const int N, const ChVector3d A, const ChVector3d B, const ChVector3d Ydir)
Add beam FEM elements to the mesh to create a segment beam from point A to point B,...
Definition: ChBuilderBeam.cpp:25
ChVector3< double > ChVector3d
Alias for double-precision vectors.
Definition: ChVector3.h:283
virtual void SetSolver(std::shared_ptr< ChSolver > newsolver)
Attach a solver (derived from ChSolver) for use by this system.
Definition: ChSystem.cpp:319
Eigen::Matrix< T, Eigen::Dynamic, 1, Eigen::ColMajor > ChVectorDynamic
Column vector with dynamic size (i.e., with size unknown at compile time).
Definition: ChMatrix.h:112
Main namespace for the Chrono package.
Definition: ChCamera.cpp:17
void SetTimestepperType(ChTimestepper::Type type)
Set the method for time integration (time stepper type).
Definition: ChSystem.cpp:412
Namespace for FEA classes.
Definition: ChVisualShapeFEA.h:28
std::vector< std::shared_ptr< ChNodeFEAxyzrot > > & GetLastBeamNodes()
Access the list of nodes used by the last built beam.
Definition: ChBuilderBeam.h:86
void SetLoadIncrementCallback(std::shared_ptr< LoadIncrementCallback > callback)
Set the callback to be called at each iteration.
Definition: ChStaticAnalysis.h:264
void SetResidualTolerance(double tol)
Set stopping criteria based on norm of residual and the specified tolerance.
Definition: ChStaticAnalysis.cpp:779
Class to be used as a callback interface for updating the system at each step of load increment.
Definition: ChStaticAnalysis.h:252