Visualize FEA meshes (demo_FEA_visualize.cpp)
Tutorial that teaches how to use the FEA module to perform FEA dynamics in a 3D view.
- Learn how to visualize FEA in the realtime view,
- Learn to use tetrahedrons and hexahedrons for nonlinear dynamics.
// =============================================================================
// PROJECT CHRONO - http://projectchrono.org
//
// Copyright (c) 2014 projectchrono.org
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file at the top level of the distribution and at
// http://projectchrono.org/license-chrono.txt.
//
// =============================================================================
// Authors: Alessandro Tasora
// =============================================================================
//
// FEA visualization using Irrlicht
//
// =============================================================================
#include "chrono/physics/ChSystemSMC.h"
#include "chrono/solver/ChIterativeSolverLS.h"
#include "chrono/fea/ChElementSpring.h"
#include "chrono/fea/ChElementBar.h"
#include "chrono/fea/ChElementTetraCorot_4.h"
#include "chrono/fea/ChElementTetraCorot_10.h"
#include "chrono/fea/ChElementHexaCorot_8.h"
#include "chrono/fea/ChElementHexaCorot_20.h"
#include "chrono/fea/ChMesh.h"
#include "chrono/fea/ChMeshFileLoader.h"
#include "chrono/fea/ChLinkPointFrame.h"
#include "chrono/fea/ChVisualizationFEAmesh.h"
#include "chrono_irrlicht/ChIrrApp.h"
//#include "chrono_matlab/ChMatlabEngine.h"
//#include "chrono_matlab/ChSolverMatlab.h"
// Remember to use the namespace 'chrono' because all classes
// of Chrono::Engine belong to this namespace and its children...
using namespace chrono;
using namespace chrono::fea;
using namespace chrono::irrlicht;
using namespace irr;
int main(int argc, char* argv[]) {
// Create a Chrono::Engine physical system
ChSystemSMC my_system;
// Create the Irrlicht visualization (open the Irrlicht device,
// bind a simple user interface, etc. etc.)
ChIrrApp application(&my_system, L"Irrlicht FEM visualization", core::dimension2d<u32>(800, 600));
// Easy shortcuts to add camera, lights, logo and sky in Irrlicht scene:
application.AddTypicalLogo();
application.AddTypicalSky();
application.AddTypicalLights();
application.AddTypicalCamera(core::vector3df(0, (f32)0.6, -1));
// Create a mesh, that is a container for groups
// of elements and their referenced nodes.
auto my_mesh = chrono_types::make_shared<ChMesh>();
// Create a material, that must be assigned to each element,
// and set its parameters
auto mmaterial = chrono_types::make_shared<ChContinuumElastic>();
mmaterial->Set_E(0.01e9); // rubber 0.01e9, steel 200e9
mmaterial->Set_v(0.3);
mmaterial->Set_RayleighDampingK(0.001);
mmaterial->Set_density(1000);
//
// Add some TETAHEDRONS:
//
// Load a .node file and a .ele file from disk, defining a complicate tetrahedron mesh.
// This is much easier than creating all nodes and elements via C++ programming.
// You can generate these files using the TetGen tool.
try {
GetChronoDataFile("fea/beam.ele").c_str(), mmaterial);
GetLog() << myerr.what();
return 0;
}
// Apply a force to a node
auto mnodelast = std::dynamic_pointer_cast<ChNodeFEAxyz>(my_mesh->GetNode(my_mesh->GetNnodes() - 1));
mnodelast->SetForce(ChVector<>(50, 0, 50));
//
// Add some HEXAHEDRONS (isoparametric bricks):
//
ChVector<> hexpos(0, 0, 0);
double sx = 0.1;
double sz = 0.1;
for (int e = 0; e < 6; ++e) {
double angle = e * (2 * CH_C_PI / 8.0);
hexpos.z() = 0.3 * cos(angle);
hexpos.x() = 0.3 * sin(angle);
ChMatrix33<> hexrot(Q_from_AngAxis(angle, VECT_Y));
std::shared_ptr<ChNodeFEAxyz> hnode1_lower;
std::shared_ptr<ChNodeFEAxyz> hnode2_lower;
std::shared_ptr<ChNodeFEAxyz> hnode3_lower;
std::shared_ptr<ChNodeFEAxyz> hnode4_lower;
for (int ilayer = 0; ilayer < 6; ++ilayer) {
double hy = ilayer * sz;
auto hnode1 = chrono_types::make_shared<ChNodeFEAxyz>(hexpos + hexrot * ChVector<>(0, hy, 0));
auto hnode2 = chrono_types::make_shared<ChNodeFEAxyz>(hexpos + hexrot * ChVector<>(0, hy, sz));
auto hnode3 = chrono_types::make_shared<ChNodeFEAxyz>(hexpos + hexrot * ChVector<>(sx, hy, sz));
auto hnode4 = chrono_types::make_shared<ChNodeFEAxyz>(hexpos + hexrot * ChVector<>(sx, hy, 0));
my_mesh->AddNode(hnode1);
my_mesh->AddNode(hnode2);
my_mesh->AddNode(hnode3);
my_mesh->AddNode(hnode4);
if (ilayer > 0) {
auto helement1 = chrono_types::make_shared<ChElementHexaCorot_8>();
helement1->SetNodes(hnode1_lower, hnode2_lower, hnode3_lower, hnode4_lower, hnode1, hnode2, hnode3,
hnode4);
helement1->SetMaterial(mmaterial);
my_mesh->AddElement(helement1);
}
hnode1_lower = hnode1;
hnode2_lower = hnode2;
hnode3_lower = hnode3;
hnode4_lower = hnode4;
}
// For example, set an initial displacement to a node:
hnode4_lower->SetPos(hnode4_lower->GetX0() + hexrot * ChVector<>(0.1, 0.1, 0));
// Apply a force to a node
hnode4_lower->SetForce(hexrot * ChVector<>(500, 0, 0));
}
//
// Final touches..
//
// Remember to add the mesh to the system!
my_system.Add(my_mesh);
// Create also a truss
auto truss = chrono_types::make_shared<ChBody>();
truss->SetBodyFixed(true);
my_system.Add(truss);
// Create constraints between nodes and truss
// (for example, fix to ground all nodes which are near y=0
for (unsigned int inode = 0; inode < my_mesh->GetNnodes(); ++inode) {
if (auto mnode = std::dynamic_pointer_cast<ChNodeFEAxyz>(my_mesh->GetNode(inode))) {
if (mnode->GetPos().y() < 0.01) {
auto constraint = chrono_types::make_shared<ChLinkPointFrame>();
constraint->Initialize(mnode, truss);
my_system.Add(constraint);
// For example, attach small cube to show the constraint
auto mboxfloor = chrono_types::make_shared<ChBoxShape>();
mboxfloor->GetBoxGeometry().Size = ChVector<>(0.005);
constraint->AddAsset(mboxfloor);
// Otherwise there is an easier method: just set the node as fixed (but
// in this way you do not get infos about reaction forces as with a constraint):
//
// mnode->SetFixed(true);
}
}
}
// ==Asset== attach a visualization of the FEM mesh.
// This will automatically update a triangle mesh (a ChTriangleMeshShape
// asset that is internally managed) by setting proper
// coordinates and vertex colors as in the FEM elements.
// Such triangle mesh can be rendered by Irrlicht or POVray or whatever
// postprocessor that can handle a colored ChTriangleMeshShape).
// Do not forget AddAsset() at the end!
auto mvisualizemesh = chrono_types::make_shared<ChVisualizationFEAmesh>(*(my_mesh.get()));
mvisualizemesh->SetFEMdataType(ChVisualizationFEAmesh::E_PLOT_NODE_SPEED_NORM);
mvisualizemesh->SetColorscaleMinMax(0.0, 5.50);
mvisualizemesh->SetShrinkElements(true, 0.85);
mvisualizemesh->SetSmoothFaces(true);
my_mesh->AddAsset(mvisualizemesh);
auto mvisualizemeshref = chrono_types::make_shared<ChVisualizationFEAmesh>(*(my_mesh.get()));
mvisualizemeshref->SetFEMdataType(ChVisualizationFEAmesh::E_PLOT_SURFACE);
mvisualizemeshref->SetWireframe(true);
mvisualizemeshref->SetDrawInUndeformedReference(true);
my_mesh->AddAsset(mvisualizemeshref);
auto mvisualizemeshC = chrono_types::make_shared<ChVisualizationFEAmesh>(*(my_mesh.get()));
mvisualizemeshC->SetFEMglyphType(ChVisualizationFEAmesh::E_GLYPH_NODE_DOT_POS);
mvisualizemeshC->SetFEMdataType(ChVisualizationFEAmesh::E_PLOT_NONE);
mvisualizemeshC->SetSymbolsThickness(0.006);
my_mesh->AddAsset(mvisualizemeshC);
// ==IMPORTANT!== Use this function for adding a ChIrrNodeAsset to all items
// in the system. These ChIrrNodeAsset assets are 'proxies' to the Irrlicht meshes.
// If you need a finer control on which item really needs a visualization proxy in
// Irrlicht, just use application.AssetBind(myitem); on a per-item basis.
application.AssetBindAll();
// ==IMPORTANT!== Use this function for 'converting' into Irrlicht meshes the assets
// that you added to the bodies into 3D shapes, they can be visualized by Irrlicht!
application.AssetUpdateAll();
// Simulation loop
my_system.SetTimestepperType(chrono::ChTimestepper::Type::EULER_IMPLICIT_LINEARIZED);
auto solver = chrono_types::make_shared<ChSolverMINRES>();
my_system.SetSolver(solver);
solver->SetMaxIterations(40);
solver->SetTolerance(1e-10);
solver->EnableDiagonalPreconditioner(true);
solver->EnableWarmStart(true); // IMPORTANT for convergence when using EULER_IMPLICIT_LINEARIZED
solver->SetVerbose(false);
application.SetTimestep(0.001);
while (application.GetDevice()->run()) {
application.BeginScene();
application.DrawAll();
application.DoStep();
// GetLog() << " t =" << my_system.GetChTime() << " mnode3 pos.y()=" << mnode3->GetPos().y() << " \n";
application.EndScene();
}
return 0;
}
std::string GetChronoDataFile(const std::string &filename)
Obtain the complete path to the specified filename, given relative to the Chrono data directory (thre...
Definition: ChGlobal.cpp:95
void Add(std::shared_ptr< ChPhysicsItem > item)
Attach an arbitrary ChPhysicsItem (e.g.
Definition: ChSystem.cpp:170
void AssetUpdateAll()
For all items in a ChSystem, this function sets up the Irrlicht nodes corresponding to the geometric ...
Definition: ChIrrApp.cpp:50
ChLog & GetLog()
Global function to get the current ChLog object.
Definition: ChLog.cpp:39
void SetTimestep(double val)
Set/Get the time step for time integration.
Definition: ChIrrAppInterface.cpp:552
Definition of a 3x3 fixed size matrix to represent 3D rotations and inertia tensors.
Definition: ChMatrix33.h:31
Class to add some GUI to Irrlicht+ChronoEngine applications.
Definition: ChIrrApp.h:29
ChQuaternion< double > Q_from_AngAxis(double angle, const ChVector< double > &axis)
Get the quaternion from an angle of rotation and an axis, defined in abs coords.
Definition: ChQuaternion.cpp:100
virtual void EndScene()
Call this to end the scene draw at the end of each animation frame.
Definition: ChIrrAppInterface.cpp:627
Definition of general purpose 3d vector variables, such as points in 3D.
Definition: ChVector.h:35
virtual void DoStep()
Call this function inside a loop such as.
Definition: ChIrrAppInterface.cpp:637
static void FromTetGenFile(std::shared_ptr< ChMesh > mesh, const char *filename_node, const char *filename_ele, std::shared_ptr< ChContinuumMaterial > my_material, ChVector<> pos_transform=VNULL, ChMatrix33<> rot_transform=ChMatrix33<>(1))
Load tetrahedrons from .node and .ele files as saved by TetGen.
Definition: ChMeshFileLoader.cpp:39
Class for a physical system in which contact is modeled using a smooth (penalty-based) method.
Definition: ChSystemSMC.h:31
virtual void SetSolver(std::shared_ptr< ChSolver > newsolver)
Attach a solver (derived from ChSolver) for use by this system.
Definition: ChSystem.cpp:307
void AssetBindAll()
Shortcut to add and bind a ChIrrNodeAsset to all items in a ChSystem.
Definition: ChIrrApp.cpp:42
virtual void BeginScene(bool backBuffer=true, bool zBuffer=true, irr::video::SColor color=irr::video::SColor(255, 0, 0, 0))
Call this to clean the canvas at the beginning of each animation frame.
Definition: ChIrrAppInterface.cpp:610
void SetTimestepperType(ChTimestepper::Type type)
Set the method for time integration (time stepper type).
Definition: ChSystem.cpp:427
virtual void DrawAll()
Call this function inside a loop such as.
Definition: ChIrrAppInterface.cpp:750