Description

Base class for inertial properties (mass, moment of inertia) of beam sections of Cosserat type.

This can be shared between multiple beams.

#include <ChBeamSectionCosserat.h>

Inheritance diagram for chrono::fea::ChInertiaCosserat:
Collaboration diagram for chrono::fea::ChInertiaCosserat:

Public Member Functions

virtual void ComputeInertiaMatrix (ChMatrixNM< double, 6, 6 > &Mi)=0
 Compute the 6x6 sectional inertia matrix, as in {x_momentum,w_momentum}=[Mi]{xvel,wvel} The matrix is computed in the material reference (i.e. More...
 
virtual void ComputeInertiaDampingMatrix (ChMatrixNM< double, 6, 6 > &Ri, const ChVector<> &mW)
 Compute the 6x6 sectional inertia damping matrix [Ri] (gyroscopic matrix damping), as in linearization dFi=[Mi]*d{xacc,wacc}+[Ri]*d{xvel,wvel}+[Ki]*d{pos,rot} The matrix is computed in the material reference, i.e. More...
 
virtual void ComputeInertiaStiffnessMatrix (ChMatrixNM< double, 6, 6 > &Ki, const ChVector<> &mWvel, const ChVector<> &mWacc, const ChVector<> &mXacc)
 Compute the 6x6 sectional inertia stiffness matrix [Ki^], as in linearization dFi=[Mi]*d{xacc,wacc}+[Ri]*d{xvel,wvel}+[Ki]*d{pos,rot} The matrix is computed in the material reference. More...
 
virtual void ComputeQuadraticTerms (ChVector<> &mF, ChVector<> &mT, const ChVector<> &mW)=0
 Compute the values of inertial force & torque depending on quadratic velocity terms, that is the gyroscopic torque and the centrifugal term (if any). More...
 
virtual void ComputeInertialForce (ChVector<> &mFi, ChVector<> &mTi, const ChVector<> &mWvel, const ChVector<> &mWacc, const ChVector<> &mXacc)
 Compute the total inertial wrench, ie forces and torques (per unit length). More...
 
virtual double GetMassPerUnitLength ()=0
 Compute mass per unit length, ex.SI units [kg/m]. More...
 

Public Attributes

ChBeamSectionCosseratsection
 
bool compute_inertia_damping_matrix = true
 Flag that turns on/off the computation of the [Ri] 'gyroscopic' inertial damping matrix. More...
 
bool compute_inertia_stiffness_matrix = true
 Flag that turns on/off the computation of the [Ki] inertial stiffness matrix. More...
 
bool compute_Ri_Ki_by_num_diff = false
 Flag for computing the Ri and Ki matrices via numerical differentiation even if an analytical expression is provided. More...
 

Member Function Documentation

◆ ComputeInertiaDampingMatrix()

void chrono::fea::ChInertiaCosserat::ComputeInertiaDampingMatrix ( ChMatrixNM< double, 6, 6 > &  Ri,
const ChVector<> &  mW 
)
virtual

Compute the 6x6 sectional inertia damping matrix [Ri] (gyroscopic matrix damping), as in linearization dFi=[Mi]*d{xacc,wacc}+[Ri]*d{xvel,wvel}+[Ki]*d{pos,rot} The matrix is computed in the material reference, i.e.

both linear and rotational coords assumed in the basis of the centerline reference. Default implementation: falls back to numerical differentiation of ComputeInertialForce to compute Ri, please override this if analytical formula of Ri is known!

Parameters
Ri6x6 sectional inertial-damping (gyroscopic damping) matrix here
mWcurrent angular velocity of section, in material frame

Reimplemented in chrono::fea::ChInertiaCosseratAdvanced, and chrono::fea::ChInertiaCosseratSimple.

◆ ComputeInertialForce()

void chrono::fea::ChInertiaCosserat::ComputeInertialForce ( ChVector<> &  mFi,
ChVector<> &  mTi,
const ChVector<> &  mWvel,
const ChVector<> &  mWacc,
const ChVector<> &  mXacc 
)
virtual

Compute the total inertial wrench, ie forces and torques (per unit length).

Note: both force and torque are returned in the basis of the material frame (not the absolute frame!), ex. to apply it to a Chrono body, the force must be rotated to absolute basis. Default implementation: falls back to Fi = [Mi]*{xacc,wacc}+{mF,mT} where [Mi] is given by ComputeInertiaMatrix() and {F_quad,T_quad} are given by ComputeQuadraticTerms(), i.e. gyro and centrif.terms. For faster implementations one can override this, ex. avoid doing the [Mi] matrix product.

Parameters
mFitotal inertial force returned here, in basis of material frame
mTitotal inertial torque returned here, in basis of material frame
mWvelcurrent angular velocity of section, in material frame
mWacccurrent angular acceleration of section, in material frame
mXacccurrent acceleration of section, in material frame (not absolute!)

◆ ComputeInertiaMatrix()

virtual void chrono::fea::ChInertiaCosserat::ComputeInertiaMatrix ( ChMatrixNM< double, 6, 6 > &  Mi)
pure virtual

Compute the 6x6 sectional inertia matrix, as in {x_momentum,w_momentum}=[Mi]{xvel,wvel} The matrix is computed in the material reference (i.e.

it is the sectional mass matrix)

Parameters
Mi6x6 sectional mass matrix here

Implemented in chrono::fea::ChInertiaCosseratSimple, and chrono::fea::ChInertiaCosseratAdvanced.

◆ ComputeInertiaStiffnessMatrix()

void chrono::fea::ChInertiaCosserat::ComputeInertiaStiffnessMatrix ( ChMatrixNM< double, 6, 6 > &  Ki,
const ChVector<> &  mWvel,
const ChVector<> &  mWacc,
const ChVector<> &  mXacc 
)
virtual

Compute the 6x6 sectional inertia stiffness matrix [Ki^], as in linearization dFi=[Mi]*d{xacc,wacc}+[Ri]*d{xvel,wvel}+[Ki]*d{pos,rot} The matrix is computed in the material reference.

NOTE the matrix already contains the 'geometric' stiffness, so it transforms to absolute transl/local rot just like [Mi] and [Ri]: [Ki]_al =[R,0;0,I]*[Ki^]*[R',0;0,I'] , with [Ki^]=([Ki]+[0,f~';0,0]) for f=current force part of inertial forces. Default implementation: falls back to numerical differentiation of ComputeInertialForce to compute Ki^, please override this if analytical formula of Ki^ is known!

Parameters
Ki6x6 sectional inertial-stiffness matrix [Ki^] here
mWvelcurrent angular velocity of section, in material frame
mWacccurrent angular acceleration of section, in material frame
mXacccurrent acceleration of section, in material frame (not absolute!)

Reimplemented in chrono::fea::ChInertiaCosseratAdvanced, and chrono::fea::ChInertiaCosseratSimple.

◆ ComputeQuadraticTerms()

virtual void chrono::fea::ChInertiaCosserat::ComputeQuadraticTerms ( ChVector<> &  mF,
ChVector<> &  mT,
const ChVector<> &  mW 
)
pure virtual

Compute the values of inertial force & torque depending on quadratic velocity terms, that is the gyroscopic torque and the centrifugal term (if any).

All terms expressed in the material reference, ie. the reference in the centerline of the section.

Parameters
mFcentrifugal term (if any) returned here
mTgyroscopic term returned here
mWcurrent angular velocity of section, in material frame

Implemented in chrono::fea::ChInertiaCosseratAdvanced, and chrono::fea::ChInertiaCosseratSimple.

◆ GetMassPerUnitLength()

virtual double chrono::fea::ChInertiaCosserat::GetMassPerUnitLength ( )
pure virtual

Compute mass per unit length, ex.SI units [kg/m].

This is also the(0, 0) element in the sectional inertia matrix.

Implemented in chrono::fea::ChInertiaCosseratAdvanced, and chrono::fea::ChInertiaCosseratSimple.

Member Data Documentation

◆ compute_inertia_damping_matrix

bool chrono::fea::ChInertiaCosserat::compute_inertia_damping_matrix = true

Flag that turns on/off the computation of the [Ri] 'gyroscopic' inertial damping matrix.

If false, Ri=0. Can be used for cpu speedup, profiling, tests. Default: true.

◆ compute_inertia_stiffness_matrix

bool chrono::fea::ChInertiaCosserat::compute_inertia_stiffness_matrix = true

Flag that turns on/off the computation of the [Ki] inertial stiffness matrix.

If false, Ki=0. Can be used for cpu speedup, profiling, tests. Default: true.

◆ compute_Ri_Ki_by_num_diff

bool chrono::fea::ChInertiaCosserat::compute_Ri_Ki_by_num_diff = false

Flag for computing the Ri and Ki matrices via numerical differentiation even if an analytical expression is provided.

Children calsses must take care of this. Default: false.


The documentation for this class was generated from the following files:
  • /builds/uwsbel/chrono/src/chrono/fea/ChBeamSectionCosserat.h
  • /builds/uwsbel/chrono/src/chrono/fea/ChBeamSectionCosserat.cpp