Visualize FEA meshes (demo_FEA_visualize.cpp)

Tutorial that teaches how to use the FEA module to perform FEA dynamics in a 3D view.

  • Learn how to visualize FEA in the realtime view,
  • Learn to use tetrahedrons and hexahedrons for nonlinear dynamics.
// =============================================================================
// PROJECT CHRONO - http://projectchrono.org
//
// Copyright (c) 2014 projectchrono.org
// All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be found
// in the LICENSE file at the top level of the distribution and at
// http://projectchrono.org/license-chrono.txt.
//
// =============================================================================
// Authors: Alessandro Tasora
// =============================================================================
//
// FEA visualization using Irrlicht
//
// =============================================================================
#include "chrono/physics/ChSystemSMC.h"
#include "chrono/solver/ChIterativeSolverLS.h"
#include "chrono/fea/ChElementSpring.h"
#include "chrono/fea/ChElementBar.h"
#include "chrono/fea/ChElementTetraCorot_4.h"
#include "chrono/fea/ChElementTetraCorot_10.h"
#include "chrono/fea/ChElementHexaCorot_8.h"
#include "chrono/fea/ChElementHexaCorot_20.h"
#include "chrono/fea/ChMesh.h"
#include "chrono/fea/ChMeshFileLoader.h"
#include "chrono/fea/ChLinkPointFrame.h"
#include "chrono/assets/ChVisualShapeFEA.h"
#include "chrono_irrlicht/ChVisualSystemIrrlicht.h"
//#include "chrono_matlab/ChMatlabEngine.h"
//#include "chrono_matlab/ChSolverMatlab.h"
// Remember to use the namespace 'chrono' because all classes
// of Chrono::Engine belong to this namespace and its children...
using namespace chrono;
using namespace chrono::fea;
using namespace chrono::irrlicht;
using namespace irr;
int main(int argc, char* argv[]) {
GetLog() << "Copyright (c) 2017 projectchrono.org\nChrono version: " << CHRONO_VERSION << "\n\n";
// Create a Chrono::Engine physical system
// Create a mesh, that is a container for groups
// of elements and their referenced nodes.
auto my_mesh = chrono_types::make_shared<ChMesh>();
// Create a material, that must be assigned to each element,
// and set its parameters
auto mmaterial = chrono_types::make_shared<ChContinuumElastic>();
mmaterial->Set_E(0.01e9); // rubber 0.01e9, steel 200e9
mmaterial->Set_v(0.3);
mmaterial->Set_RayleighDampingK(0.001);
mmaterial->Set_density(1000);
//
// Add some TETAHEDRONS:
//
// Load a .node file and a .ele file from disk, defining a complicate tetrahedron mesh.
// This is much easier than creating all nodes and elements via C++ programming.
// You can generate these files using the TetGen tool.
try {
ChMeshFileLoader::FromTetGenFile(my_mesh, GetChronoDataFile("fea/beam.node").c_str(),
GetChronoDataFile("fea/beam.ele").c_str(), mmaterial);
} catch (const ChException& myerr) {
GetLog() << myerr.what();
return 0;
}
// Apply a force to a node
auto mnodelast = std::dynamic_pointer_cast<ChNodeFEAxyz>(my_mesh->GetNode(my_mesh->GetNnodes() - 1));
mnodelast->SetForce(ChVector<>(50, 0, 50));
//
// Add some HEXAHEDRONS (isoparametric bricks):
//
ChVector<> hexpos(0, 0, 0);
double sx = 0.1;
double sz = 0.1;
for (int e = 0; e < 6; ++e) {
double angle = e * (2 * CH_C_PI / 8.0);
hexpos.z() = 0.3 * cos(angle);
hexpos.x() = 0.3 * sin(angle);
ChMatrix33<> hexrot(Q_from_AngAxis(angle, VECT_Y));
std::shared_ptr<ChNodeFEAxyz> hnode1_lower;
std::shared_ptr<ChNodeFEAxyz> hnode2_lower;
std::shared_ptr<ChNodeFEAxyz> hnode3_lower;
std::shared_ptr<ChNodeFEAxyz> hnode4_lower;
for (int ilayer = 0; ilayer < 6; ++ilayer) {
double hy = ilayer * sz;
auto hnode1 = chrono_types::make_shared<ChNodeFEAxyz>(hexpos + hexrot * ChVector<>(0, hy, 0));
auto hnode2 = chrono_types::make_shared<ChNodeFEAxyz>(hexpos + hexrot * ChVector<>(0, hy, sz));
auto hnode3 = chrono_types::make_shared<ChNodeFEAxyz>(hexpos + hexrot * ChVector<>(sx, hy, sz));
auto hnode4 = chrono_types::make_shared<ChNodeFEAxyz>(hexpos + hexrot * ChVector<>(sx, hy, 0));
my_mesh->AddNode(hnode1);
my_mesh->AddNode(hnode2);
my_mesh->AddNode(hnode3);
my_mesh->AddNode(hnode4);
if (ilayer > 0) {
auto helement1 = chrono_types::make_shared<ChElementHexaCorot_8>();
helement1->SetNodes(hnode1_lower, hnode2_lower, hnode3_lower, hnode4_lower, hnode1, hnode2, hnode3,
hnode4);
helement1->SetMaterial(mmaterial);
my_mesh->AddElement(helement1);
}
hnode1_lower = hnode1;
hnode2_lower = hnode2;
hnode3_lower = hnode3;
hnode4_lower = hnode4;
}
// For example, set an initial displacement to a node:
hnode4_lower->SetPos(hnode4_lower->GetX0() + hexrot * ChVector<>(0.1, 0.1, 0));
// Apply a force to a node
hnode4_lower->SetForce(hexrot * ChVector<>(500, 0, 0));
}
//
// Final touches..
//
// Remember to add the mesh to the system!
sys.Add(my_mesh);
// Create also a truss
auto truss = chrono_types::make_shared<ChBody>();
truss->SetBodyFixed(true);
sys.Add(truss);
// Create constraints between nodes and truss
// (for example, fix to ground all nodes which are near y=0
for (unsigned int inode = 0; inode < my_mesh->GetNnodes(); ++inode) {
if (auto mnode = std::dynamic_pointer_cast<ChNodeFEAxyz>(my_mesh->GetNode(inode))) {
if (mnode->GetPos().y() < 0.01) {
auto constraint = chrono_types::make_shared<ChLinkPointFrame>();
constraint->Initialize(mnode, truss);
sys.Add(constraint);
// For example, attach small cube to show the constraint
auto mboxfloor = chrono_types::make_shared<ChBoxShape>();
mboxfloor->GetBoxGeometry().Size = ChVector<>(0.005);
constraint->AddVisualShape(mboxfloor);
// Otherwise there is an easier method: just set the node as fixed (but
// in this way you do not get infos about reaction forces as with a constraint):
//
// mnode->SetFixed(true);
}
}
}
// Visualization of the FEM mesh.
// This will automatically update a triangle mesh (a ChTriangleMeshShape
// asset that is internally managed) by setting proper
// coordinates and vertex colors as in the FEM elements.
// Such triangle mesh can be rendered by Irrlicht or POVray or whatever
// postprocessor that can handle a colored ChTriangleMeshShape).
auto mvisualizemesh = chrono_types::make_shared<ChVisualShapeFEA>(my_mesh);
mvisualizemesh->SetFEMdataType(ChVisualShapeFEA::DataType::NODE_SPEED_NORM);
mvisualizemesh->SetColorscaleMinMax(0.0, 5.50);
mvisualizemesh->SetShrinkElements(true, 0.85);
mvisualizemesh->SetSmoothFaces(true);
my_mesh->AddVisualShapeFEA(mvisualizemesh);
auto mvisualizemeshref = chrono_types::make_shared<ChVisualShapeFEA>(my_mesh);
mvisualizemeshref->SetFEMdataType(ChVisualShapeFEA::DataType::SURFACE);
mvisualizemeshref->SetWireframe(true);
mvisualizemeshref->SetDrawInUndeformedReference(true);
my_mesh->AddVisualShapeFEA(mvisualizemeshref);
auto mvisualizemeshC = chrono_types::make_shared<ChVisualShapeFEA>(my_mesh);
mvisualizemeshC->SetFEMglyphType(ChVisualShapeFEA::GlyphType::NODE_DOT_POS);
mvisualizemeshC->SetFEMdataType(ChVisualShapeFEA::DataType::NONE);
mvisualizemeshC->SetSymbolsThickness(0.006);
my_mesh->AddVisualShapeFEA(mvisualizemeshC);
// Create the Irrlicht visualization system
auto vis = chrono_types::make_shared<ChVisualSystemIrrlicht>();
vis->SetWindowSize(800, 600);
vis->SetWindowTitle("Irrlicht FEM visualization");
vis->Initialize();
vis->AddLogo();
vis->AddSkyBox();
vis->AddCamera(ChVector<>(0.0, 0.6, -1.0));
vis->AttachSystem(&sys);
// Simulation loop
sys.SetTimestepperType(chrono::ChTimestepper::Type::EULER_IMPLICIT_LINEARIZED);
auto solver = chrono_types::make_shared<ChSolverMINRES>();
sys.SetSolver(solver);
solver->SetMaxIterations(40);
solver->SetTolerance(1e-10);
solver->EnableDiagonalPreconditioner(true);
solver->EnableWarmStart(true); // IMPORTANT for convergence when using EULER_IMPLICIT_LINEARIZED
solver->SetVerbose(false);
while (vis->Run()) {
vis->BeginScene();
vis->Render();
vis->EndScene();
sys.DoStepDynamics(0.001);
// GetLog() << " t =" << sys.GetChTime() << " mnode3 pos.y()=" << mnode3->GetPos().y() << " \n";
}
return 0;
}
void AddTypicalLights()
Simple shortcut to set two point lights in the scene.
Definition: ChVisualSystemIrrlicht.cpp:286
std::string GetChronoDataFile(const std::string &filename)
Obtain the complete path to the specified filename, given relative to the Chrono data directory (thre...
Definition: ChGlobal.cpp:95
void Add(std::shared_ptr< ChPhysicsItem > item)
Attach an arbitrary ChPhysicsItem (e.g.
Definition: ChSystem.cpp:179
void AddSkyBox(const std::string &texture_dir=GetChronoDataFile("skybox/"))
Add a sky box in a 3D scene.
Definition: ChVisualSystemIrrlicht.cpp:299
Class for exceptions for throw() catch() mechanism.
Definition: ChException.h:25
virtual void Initialize()
Initialize the visualization system.
Definition: ChVisualSystemIrrlicht.cpp:160
ChLog & GetLog()
Global function to get the current ChLog object.
Definition: ChLog.cpp:39
Definition of a 3x3 fixed size matrix to represent 3D rotations and inertia tensors.
Definition: ChMatrix33.h:31
bool Run()
Run the Irrlicht device.
Definition: ChVisualSystemIrrlicht.cpp:217
void AddCamera(const ChVector<> &pos, ChVector<> targ=VNULL)
Add a camera in an Irrlicht 3D scene.
Definition: ChVisualSystemIrrlicht.cpp:268
ChQuaternion< double > Q_from_AngAxis(double angle, const ChVector< double > &axis)
Get the quaternion from an angle of rotation and an axis, defined in abs coords.
Definition: ChQuaternion.cpp:99
virtual void BeginScene(bool backBuffer=true, bool zBuffer=true, ChColor color=ChColor(0, 0, 0))
Clean the canvas at the beginning of each animation frame.
Definition: ChVisualSystemIrrlicht.cpp:501
Namespace with classes for the Irrlicht module.
Definition: ChApiIrr.h:48
Definition of general purpose 3d vector variables, such as points in 3D.
Definition: ChVector.h:35
static void FromTetGenFile(std::shared_ptr< ChMesh > mesh, const char *filename_node, const char *filename_ele, std::shared_ptr< ChContinuumMaterial > my_material, ChVector<> pos_transform=VNULL, ChMatrix33<> rot_transform=ChMatrix33<>(1))
Load tetrahedrons from .node and .ele files as saved by TetGen.
Definition: ChMeshFileLoader.cpp:39
int DoStepDynamics(double step_size)
Advances the dynamical simulation for a single step, of length step_size.
Definition: ChSystem.cpp:1422
Class for a physical system in which contact is modeled using a smooth (penalty-based) method.
Definition: ChSystemSMC.h:30
virtual void EndScene()
End the scene draw at the end of each animation frame.
Definition: ChVisualSystemIrrlicht.cpp:546
void SetWindowTitle(const std::string &win_title)
Set the windoiw title (default "").
Definition: ChVisualSystemIrrlicht.cpp:124
virtual void AttachSystem(ChSystem *sys) override
Attach another Chrono system to the run-time visualization system.
Definition: ChVisualSystemIrrlicht.cpp:144
virtual void SetSolver(std::shared_ptr< ChSolver > newsolver)
Attach a solver (derived from ChSolver) for use by this system.
Definition: ChSystem.cpp:335
virtual void Render()
Draw all 3D shapes and GUI elements at the current frame.
Definition: ChVisualSystemIrrlicht.cpp:556
Main namespace for the Chrono package.
Definition: ChBarrelShape.cpp:17
void SetTimestepperType(ChTimestepper::Type type)
Set the method for time integration (time stepper type).
Definition: ChSystem.cpp:455
void AddLogo(const std::string &logo_filename=GetChronoDataFile("logo_chronoengine_alpha.png"))
Add a logo in a 3D scene.
Definition: ChVisualSystemIrrlicht.cpp:260
Namespace for FEA classes.
Definition: ChVisualShapeFEA.h:25
void SetWindowSize(unsigned int width, unsigned int height)
Set the window size (default 640x480).
Definition: ChVisualSystemIrrlicht.cpp:120